
Math 203B (Number Theory), UCSD, winter 2015
Notes on Hensel’s lemma

Let K be a field complete with respect to a (not necessarily discrete) nonarchimedean
absolute value. Let oK denote the valuation ring of K. Let pK denote the maximal ideal of
oK . Let k denote the residue field of oK .

In class, we proved Hensel’s lemma in the following form (following Neukirch II.4.6).

Theorem 1. For any polynomial f(T ) ∈ oK [T ] which is primitive (its reduction f(T ) ∈ k[T ]
is nonzero) and any factorization

f(T ) = g(T )h(T )

in k[T ] such that g, h are coprime, there is a unique lift of this factorization to a factorization

f(T ) = g(T )h(T )

such that deg(g) = deg(g).

This is most commonly applied as follows.

Corollary 2. Let f(T ) ∈ oK [T ] be a polynomial. Then any simple root of f(T ) in k lifts
uniquely to a root of f(T ) in oK.

Proof. Apply Theorem 1 with g = T − x where x is a simple root of f .

It turns out that one can recover Theorem 1 from Corollary 2 using some trickery involving
symmetric polynomials, but we will not need to do this. Instead, we describe a stronger
version of Corollary 2.

Theorem 3. Suppose f(T ) ∈ oK [T ] and t0 ∈ oK satisfy

|f(t0)| < |f ′(t0)|2 .

Then there exists a unique root t of f satisfying

|t− t0| < |f ′(t0)| ,

and this root actually satisfies

|t− t0| ≤
|f(t0)|
|f ′(t0)|

.

Note that we recover Corollary 2 by taking t0 ∈ oK to be a lift of a simple root of f ; in
this case, |f(t0)| < 1 while |f ′(t0)| = 1.

To prove Theorem 3, we use the Banach contraction mapping theorem.
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Lemma 4. Let X be a complete metric space with distance function d. Let g : X → X be a
map such that for some ε ∈ [0, 1), we have

d(g(x), g(y)) ≤ εd(x, y) (x, y ∈ X). (1)

Then there exists a unique x ∈ X such that g(x) = x.

Proof. We first check uniqueness. If x, y ∈ X satisfy g(x) = x, g(y) = y, then (1) implies

d(x, y) = d(g(x), g(y)) ≤ εd(x, y),

so d(x, y) = 0 and hence x = y.
We next check existence. Choose any x0 ∈ X and define

x1 = g(x0), x2 = g(x1), . . . .

By (1) again,
d(xn+2, xn+1) ≤ εd(xn+1, xn),

from which it follows immediately that x0, x1, . . . is a Cauchy sequence. Since X is complete,
this Cauchy sequence admits a unique limit x. By (1) again, g is continuous for the metric
topology, so x1, x2, . . . is a Cauchy sequence with limit g(x). By the uniqueness of limits in
a metric topology, this forces g(x) = x, proving existence of a fixed point.

Proof of Theorem 3. Pick any real number c satisfying

|f(t0)|
|f ′(t0)|

≤ c < |f ′(t0)|.

Let X be the set of t ∈ K satisfying |t − t0| ≤ c, equipped with the metric topology. Since
f has coefficients in oK , so does f ′; consequently,

|f ′(t)− f ′(t0)| ≤ |t− t0| ≤ c < |f ′(t0)| (t ∈ X),

so |f ′(t)| = |f ′(t0)| 6= 0 for all t ∈ X. We may thus define the function g : X → K by the
formula

g(t) = t− f(t)

f ′(t)
.

Since f has coefficients in oK , from the definitions of c and X we have

|f(t)| ≤ max{|f(t0)|, |f ′(t0)||t− t0|, |t− t0|2} ≤ c|f ′(t0)| (t ∈ X).

Since we already computed that |f ′(t)| = |f ′(t0)|, this implies

|f(t)| ≤ c|f ′(t)| (t ∈ X),

so |g(t)− t| ≤ c and so |g(t)− t0| ≤ c. In other words, g maps X into itself.
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Now choose t, u ∈ X and expand f(u), f ′(u) as polynomials in u− t:

f(u) = f(t) + f ′(t)(u− t) + · · ·
f ′(u) = f ′(t) + f ′′(t)(u− t) + · · · .

We then compute that as a formal (and also convergent) power series in u− t,

g(u)− g(t) =
f(t)f ′′(t)

f ′(t)2
(u− t) + · · · ,

from which we see that
|g(u)− g(t)| ≤ c

|f ′(t0)|
|u− t|.

We may thus apply Lemma 4 to deduce that there is a unique t ∈ X such that g(t) = t, and
hence f(t) = 0.

This proves that there is a unique root t of f satisfying |t− t0| ≤ c. On one hand, since
we could have taken c = |f(t0)|/|f ′(t0)|, we deduce that

|t− t0| ≤
|f(t0)|
|f ′(t0)|

.

On the other hand, since c can be taken arbitrarily close to |f ′(t0)|, we deduce that t is the
unique root of f for which |t − t0| < |f ′(t0)|. (Note that Lemma 4 does not directly apply
to the set of t ∈ K for which |t − t0| < |f ′(t0)|, because the value of ε cannot be chosen
uniformly.)
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