Math 203B (Number Theory), UCSD, winter 2015 Notes on Hensel's lemma

Let K be a field complete with respect to a (not necessarily discrete) nonarchimedean absolute value. Let \mathfrak{o}_{K} denote the valuation ring of K. Let \mathfrak{p}_{K} denote the maximal ideal of \mathfrak{o}_{K}. Let k denote the residue field of \mathfrak{o}_{K}.

In class, we proved Hensel's lemma in the following form (following Neukirch II.4.6).
Theorem 1. For any polynomial $f(T) \in \mathfrak{o}_{K}[T]$ which is primitive (its reduction $\bar{f}(T) \in k[T]$ is nonzero) and any factorization

$$
\bar{f}(T)=\bar{g}(T) \bar{h}(T)
$$

in $k[T]$ such that \bar{g}, \bar{h} are coprime, there is a unique lift of this factorization to a factorization

$$
f(T)=g(T) h(T)
$$

such that $\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$.
This is most commonly applied as follows.
Corollary 2. Let $f(T) \in \mathfrak{o}_{K}[T]$ be a polynomial. Then any simple root of $\bar{f}(T)$ in k lifts uniquely to a root of $f(T)$ in \mathfrak{o}_{K}.

Proof. Apply Theorem 1 with $\bar{g}=T-\bar{x}$ where \bar{x} is a simple root of \bar{f}.
It turns out that one can recover Theorem 1 from Corollary 2 using some trickery involving symmetric polynomials, but we will not need to do this. Instead, we describe a stronger version of Corollary 2.

Theorem 3. Suppose $f(T) \in \mathfrak{o}_{K}[T]$ and $t_{0} \in \mathfrak{o}_{K}$ satisfy

$$
\left|f\left(t_{0}\right)\right|<\left|f^{\prime}\left(t_{0}\right)\right|^{2}
$$

Then there exists a unique root t of f satisfying

$$
\left|t-t_{0}\right|<\left|f^{\prime}\left(t_{0}\right)\right|,
$$

and this root actually satisfies

$$
\left|t-t_{0}\right| \leq \frac{\left|f\left(t_{0}\right)\right|}{\left|f^{\prime}\left(t_{0}\right)\right|}
$$

Note that we recover Corollary 2 by taking $t_{0} \in \mathfrak{o}_{K}$ to be a lift of a simple root of \bar{f}; in this case, $\left|f\left(t_{0}\right)\right|<1$ while $\left|f^{\prime}\left(t_{0}\right)\right|=1$.

To prove Theorem 3, we use the Banach contraction mapping theorem.

Lemma 4. Let X be a complete metric space with distance function d. Let $g: X \rightarrow X$ be a map such that for some $\epsilon \in[0,1)$, we have

$$
\begin{equation*}
d(g(x), g(y)) \leq \epsilon d(x, y) \quad(x, y \in X) \tag{1}
\end{equation*}
$$

Then there exists a unique $x \in X$ such that $g(x)=x$.
Proof. We first check uniqueness. If $x, y \in X$ satisfy $g(x)=x, g(y)=y$, then (1) implies

$$
d(x, y)=d(g(x), g(y)) \leq \epsilon d(x, y)
$$

so $d(x, y)=0$ and hence $x=y$.
We next check existence. Choose any $x_{0} \in X$ and define

$$
x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right), \ldots .
$$

By (1) again,

$$
d\left(x_{n+2}, x_{n+1}\right) \leq \epsilon d\left(x_{n+1}, x_{n}\right),
$$

from which it follows immediately that x_{0}, x_{1}, \ldots is a Cauchy sequence. Since X is complete, this Cauchy sequence admits a unique limit x. By (1) again, g is continuous for the metric topology, so x_{1}, x_{2}, \ldots is a Cauchy sequence with limit $g(x)$. By the uniqueness of limits in a metric topology, this forces $g(x)=x$, proving existence of a fixed point.

Proof of Theorem 3. Pick any real number c satisfying

$$
\frac{\left|f\left(t_{0}\right)\right|}{\left|f^{\prime}\left(t_{0}\right)\right|} \leq c<\left|f^{\prime}\left(t_{0}\right)\right| .
$$

Let X be the set of $t \in K$ satisfying $\left|t-t_{0}\right| \leq c$, equipped with the metric topology. Since f has coefficients in \mathfrak{o}_{K}, so does f^{\prime}; consequently,

$$
\left|f^{\prime}(t)-f^{\prime}\left(t_{0}\right)\right| \leq\left|t-t_{0}\right| \leq c<\left|f^{\prime}\left(t_{0}\right)\right| \quad(t \in X)
$$

so $\left|f^{\prime}(t)\right|=\left|f^{\prime}\left(t_{0}\right)\right| \neq 0$ for all $t \in X$. We may thus define the function $g: X \rightarrow K$ by the formula

$$
g(t)=t-\frac{f(t)}{f^{\prime}(t)}
$$

Since f has coefficients in \mathfrak{o}_{K}, from the definitions of c and X we have

$$
|f(t)| \leq \max \left\{\left|f\left(t_{0}\right)\right|,\left|f^{\prime}\left(t_{0}\right)\right|\left|t-t_{0}\right|,\left|t-t_{0}\right|^{2}\right\} \leq c\left|f^{\prime}\left(t_{0}\right)\right| \quad(t \in X)
$$

Since we already computed that $\left|f^{\prime}(t)\right|=\left|f^{\prime}\left(t_{0}\right)\right|$, this implies

$$
|f(t)| \leq c\left|f^{\prime}(t)\right| \quad(t \in X)
$$

so $|g(t)-t| \leq c$ and so $\left|g(t)-t_{0}\right| \leq c$. In other words, g maps X into itself.

Now choose $t, u \in X$ and expand $f(u), f^{\prime}(u)$ as polynomials in $u-t$:

$$
\begin{aligned}
f(u) & =f(t)+f^{\prime}(t)(u-t)+\cdots \\
f^{\prime}(u) & =f^{\prime}(t)+f^{\prime \prime}(t)(u-t)+\cdots .
\end{aligned}
$$

We then compute that as a formal (and also convergent) power series in $u-t$,

$$
g(u)-g(t)=\frac{f(t) f^{\prime \prime}(t)}{f^{\prime}(t)^{2}}(u-t)+\cdots,
$$

from which we see that

$$
|g(u)-g(t)| \leq \frac{c}{\left|f^{\prime}\left(t_{0}\right)\right|}|u-t| .
$$

We may thus apply Lemma 4 to deduce that there is a unique $t \in X$ such that $g(t)=t$, and hence $f(t)=0$.

This proves that there is a unique root t of f satisfying $\left|t-t_{0}\right| \leq c$. On one hand, since we could have taken $c=\left|f\left(t_{0}\right)\right| /\left|f^{\prime}\left(t_{0}\right)\right|$, we deduce that

$$
\left|t-t_{0}\right| \leq \frac{\left|f\left(t_{0}\right)\right|}{\left|f^{\prime}\left(t_{0}\right)\right|} .
$$

On the other hand, since c can be taken arbitrarily close to $\left|f^{\prime}\left(t_{0}\right)\right|$, we deduce that t is the unique root of f for which $\left|t-t_{0}\right|<\left|f^{\prime}\left(t_{0}\right)\right|$. (Note that Lemma 4 does not directly apply to the set of $t \in K$ for which $\left|t-t_{0}\right|<\left|f^{\prime}\left(t_{0}\right)\right|$, because the value of ϵ cannot be chosen uniformly.)

