Math 204B (Algebraic Number theory), UCSD, winter 2015 Problem Set 1 (due Wednesday, January 14)

Solve the following problems, and turn in the solutions to *four* of them. You may work with other students in the course and/or consult external references, but please indicate *all* such collaborations and consultations. Failure to do so will be considered a violation of academic integrity.

- 1. Complete the proof sketched in lecture that \mathbb{Q}_p , defined algebraically as $\mathbb{Z}_p[1/p]$ where \mathbb{Z}_p is the inverse limit of $\mathbb{Z}/p^n\mathbb{Z}$ over all positive integers n, is also the completion of \mathbb{Q} with respect to the *p*-adic absolute value, by carrying out the following steps.
 - (a) Show that there is a unique ring homomorphism from \mathbb{Q} to \mathbb{Q}_p , which is injective.
 - (b) Show that \mathbb{Q} is dense in \mathbb{Q}_p with respect to $|\bullet|_p$. Reminder: for $x \in \mathbb{Q}_p$ nonzero, $|x|_p = p^{-v_p(x)}$ where $v_p(x)$ is the unique integer n such that $p^{-n}x$ is a unit in \mathbb{Z}_p .
 - (c) Show that \mathbb{Q}_p is complete with respect to $|\bullet|_p$.
- 2. Suppose that p > 2. Show that for any $x \in p\mathbb{Z}_p$, the exponential series

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

and the logarithm series

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$$

converge in \mathbb{Q}_p . Then explain what happens when p = 2.

- 3. (a) Show that every field homomorphism $\tau : \mathbb{R} \to \mathbb{R}$ is the identity *without* assuming that τ is continuous. (Hint: use the fact that every nonnegative real number is a perfect square to deduce that τ is order-preserving, then argue that τ must fix \mathbb{Q} .)
 - (b) Let p be a prime. Prove that the set of $x \in \mathbb{Q}_p$ having an n-th root for all positive integers n not divisible by p is equal to $1 + p\mathbb{Z}_p$. (Hint: use the binomial series, but be careful about the case p = 2.)
 - (c) Using (b), show that every field homomorphism $\tau : \mathbb{Q}_p \to \mathbb{Q}_p$ is the identity without assuming that τ is continuous.
- Choose x ∈ Z_p not divisible by p. Suppose either that p > 2 and x is congruent to a perfect square modulo p, or that p = 2 and x is congruent to a perfect square modulo 8. Show that x has a square root in Z_p.
- 5. Show that for $x, y \in \mathbb{Z}_p$, if $x \equiv y \pmod{p}$ then $x^p \equiv y^p \pmod{p^2}$. Then use this to show that every element of $\mathbb{Z}/p\mathbb{Z}$ lifts uniquely to a solution of the equation $x^p = x$. We will have more to say about these solutions later!

6. Create an account on SageMathCloud (https://cloud.sagemath.com), then let me know so that I can add you to the course account. Once you've done that, find the online assignment, do it, and submit it through the web site.