Math 204B (Algebraic Number theory), UCSD, winter 2015 Problem Set 1 (due Wednesday, January 14)

Solve the following problems, and turn in the solutions to four of them. You may work with other students in the course and/or consult external references, but please indicate all such collaborations and consultations. Failure to do so will be considered a violation of academic integrity.

1. Complete the proof sketched in lecture that \mathbb{Q}_{p}, defined algebraically as $\mathbb{Z}_{p}[1 / p]$ where \mathbb{Z}_{p} is the inverse limit of $\mathbb{Z} / p^{n} \mathbb{Z}$ over all positive integers n, is also the completion of \mathbb{Q} with respect to the p-adic absolute value, by carrying out the following steps.
(a) Show that there is a unique ring homomorphism from \mathbb{Q} to \mathbb{Q}_{p}, which is injective.
(b) Show that \mathbb{Q} is dense in \mathbb{Q}_{p} with respect to $|\bullet|_{p}$. Reminder: for $x \in \mathbb{Q}_{p}$ nonzero, $|x|_{p}=p^{-v_{p}(x)}$ where $v_{p}(x)$ is the unique integer n such that $p^{-n} x$ is a unit in \mathbb{Z}_{p}.
(c) Show that \mathbb{Q}_{p} is complete with respect to $|\bullet|_{p}$.
2. Suppose that $p>2$. Show that for any $x \in p \mathbb{Z}_{p}$, the exponential series

$$
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

and the logarithm series

$$
\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}
$$

converge in \mathbb{Q}_{p}. Then explain what happens when $p=2$.
3. (a) Show that every field homomorphism $\tau: \mathbb{R} \rightarrow \mathbb{R}$ is the identity without assuming that τ is continuous. (Hint: use the fact that every nonnegative real number is a perfect square to deduce that τ is order-preserving, then argue that τ must fix Q.)
(b) Let p be a prime. Prove that the set of $x \in \mathbb{Q}_{p}$ having an n-th root for all positive integers n not divisible by p is equal to $1+p \mathbb{Z}_{p}$. (Hint: use the binomial series, but be careful about the case $p=2$.)
(c) Using (b), show that every field homomorphism $\tau: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ is the identity without assuming that τ is continuous.
4. Choose $x \in \mathbb{Z}_{p}$ not divisible by p. Suppose either that $p>2$ and x is congruent to a perfect square modulo p, or that $p=2$ and x is congruent to a perfect square modulo 8. Show that x has a square root in \mathbb{Z}_{p}.
5. Show that for $x, y \in \mathbb{Z}_{p}$, if $x \equiv y(\bmod p)$ then $x^{p} \equiv y^{p}\left(\bmod p^{2}\right)$. Then use this to show that every element of $\mathbb{Z} / p \mathbb{Z}$ lifts uniquely to a solution of the equation $x^{p}=x$. We will have more to say about these solutions later!
6. Create an account on SageMathCloud (https://cloud.sagemath.com), then let me know so that I can add you to the course account. Once you've done that, find the online assignment, do it, and submit it through the web site.

