Math 204B (Algebraic Number theory), UCSD, winter 2015 Problem Set 2 (due Wednesday, January 21)

Solve the following problems, and turn in the solutions to *four* of them. You may use SageMathCloud to submit the entire assignment if you choose. (From now on, I will omit the disclaimer about collaborations, but it will apply for the rest of the term.)

Clarification: you are permitted to cite the result of any given problem in your solution to any subsequent problem, on the same problem set or a later one, regardless of whether or not you submitted a solution to the original problem.

Throughout this problem set, let K be a field complete with respect to a nonarchimedean absolute value, and let \mathfrak{o}_K be the associated valuation ring.

- 1. Neukirch, exercises II.2.8 and II.2.9 (these together count as one problem).
- 2. Neukirch, exercises II.4.2 and II.4.3 (these together count as one problem).
- 3. Neukirch, exercise II.4.1: prove that an infinite algebraic extension of K, when equipped with the unique extension of the absolute value on K, is *never* complete. (Hint: any finite subextension is complete and hence closed.)
- 4. (a) Prove that \mathbf{o}_K is integrally closed, that is, any element of K which is a root of a monic polynomial over \mathbf{o}_K must itself belong to \mathbf{o}_K .
 - (b) Suppose that K is a finite extension of \mathbb{Q}_p . Prove that \mathfrak{o}_K equals the integral closure of \mathbb{Z}_p in K.
- 5. Let p be a prime.
 - (a) Prove that if $K = \mathbb{Q}_p(\zeta_n)$ for some positive integer n, then $\mathfrak{o}_K = \mathbb{Z}_p[\zeta_n]$.
 - (b) Prove that the maximal ideal of $\mathbb{Z}_p[\zeta_p]$ is generated by $\zeta_p 1$.
 - (c) Prove that $\mathbb{Q}_p(\zeta_p)$ contains an element π satisfying $\pi^{p-1} = -p$.
- 6. For $f = \sum_{n=0}^{\infty} f_n T^n$ a power series in T with coefficients in K, we define the radius of convergence of f as

$$\rho(f) = \liminf_{n \to \infty} |f_n|^{-1/n}.$$

Prove that this has the expected property: for $x \in K$, $\sum_{n=0}^{\infty} f_n x^n$ converges if $|x| < \rho(f)$ and diverges if $|x| > \rho(f)$. Also give examples to show that the series can either converge or diverge in case $|x| = \rho(f)$.

7. See SageMathCloud for this problem.