Math 204B (Algebraic Number theory), UCSD, winter 2015 Problem Set 3 (due Wednesday, January 28)

Solve the following problems, and turn in the solutions to four of them.

1. Prove that \mathbb{Q} has Haar measure 0 inside \mathbb{Q}_{p}.
2. Neukirch, exercise II.6.1. Hint: look at the Newton polygon of $g\left(x-\alpha_{i}\right)$.
3. Let K be a field complete for a nonarchimedean absolute value. Let L be the completion of an algebraic closure of K for the unique extension of the absolute value. Prove that L is itself algebraically closed. (Hint: use the previous exercise.)
4. (a) Explain how the properties of Newton polygons imply the Eisenstein irreducibility criterion.
(b) Exhibit an example of a polynomial over \mathbb{Q} which can be shown to be irreducible using Newton polygons over \mathbb{Q}_{p} for some p, but does not satisfy the Eisenstein criterion for any prime p.
5. Let \mathfrak{o} be a complete discrete valuation ring with residue field k. Let k_{0} be a subfield of k which is perfect of characteristic $p>0$ (so in particular k itself is of characteristic $p)$.
(a) Show that there is a unique multiplicative (but not additive) map $k_{0} \rightarrow \mathfrak{o}$ such that the composition $k_{0} \rightarrow \mathfrak{o} \rightarrow k$ coincides with the inclusion $k_{0} \rightarrow k$. (Hint: for each $x \in k_{0}$, consider the p^{n}-th power of a lift of a p^{n}-th root of x for varying n.)
(b) Describe the image of the map in (a) in the case $\mathfrak{o}=\mathbb{Z}_{p}, k_{0}=k=\mathbb{F}_{p}$.
(c) Suppose that \mathfrak{o} has maximal ideal (p) and that k is perfect. Let \mathfrak{o}^{\prime} be a complete discrete valuation ring with residue field k^{\prime}. Prove that any homomorphism $k \rightarrow k^{\prime}$ of fields lifts in at most one way to a continuous homomorphism $\mathfrak{o} \rightarrow \mathfrak{o}^{\prime}$. (It turns out that the lift always exists; this can be shown for instance using Witt vectors.)
6. Show that part (a) of the previous exercise fails if we allow k either to be imperfect or to be of characteristic 0 .
