Math 204B (Algebraic Number theory), UCSD, winter 2015 Problem Set 5 (due Wednesday, February 18)

Solve the following problems, and turn in the solutions to *four* of them.

- 1. Exhibit an example of a finite Galois extension K of \mathbb{Q} such that for every prime p, the decomposition group at p is strictly smaller than $\operatorname{Gal}(K/\mathbb{Q})$.
- 2. Neukirch, exercise II.10.1.
- 3. Neukirch, exercise II.10.2.
- 4. With notation as in PS 4, problems 6-7, check that the inverse limits of \mathfrak{o}_K and $\mathfrak{o}_K/(p)$ under the *p*-th power map coincide. Then calculate the field K' in the following cases:
 - (a) $K = \mathbb{Q}_p;$
 - (b) K is the completion of $\bigcup_{n=1}^{\infty} \mathbb{Q}_p(\zeta_{p^n});$
 - (c) K is the completion of $\bigcup_{n=1}^{\infty} \mathbb{Q}_p(p^{1/p^n})$.
- 5. Let K be a field complete with respect to a nonarchimedean absolute value. For d a positive integer, let S_d be the set of monic polynomials of degree d over K, topologized as a vector space over K.
 - (a) Prove that for any positive integer d, there exists a nonempty open subset of S_d consisting entirely of reducible polynomials. (Hint: Newton polygons.)
 - (b) Prove that for any positive integer d, any irreducible polynomial in S_d admits an open neighborhood consisting entirely of irreducible polynomials. (Hint: remember that the roots of a polynomial vary continuously in the coefficients.)
- 6. Let K be a field which is complete with respect to two inequivalent nonarchimedean absolute values. Prove that K must be algebraically closed. (Hint: use the previous exercise.)