Math 204B: Number Theory UCSD, winter 2017 Problem Set 1 (due Wednesday, January 18)

- 1. Explain, then prove, the following statement: "The completion of $\mathbb{Q}(i)$ with respect to the (2 + i)-adic absolute value is isomorphic to \mathbb{Q}_5 ."
- 2. Let p be a prime number.
 - (a) Determine which elements of \mathbb{Q}_p are *p*-th powers. Beware that the case p = 2 is a bit different.
 - (b) For *n* a positive integer congruent to 1 mod *p*, determine which elements of \mathbb{Q}_p are *n*-th powers.
 - (c) Using (a) and (b), prove that the field \mathbb{Q}_p has no nontrivial automorphisms. The point is to show that every automorphism is continuous with respect to the *p*-adic absolute value. (Hint: first show that every automorphism also acts on \mathbb{Z}_p .)
- 3. Prove that for p and q two distinct primes, the fields \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic. Hint: one approach is to use the previous exercise.
- 4. Prove that for p > 2, for every $x \in p\mathbb{Z}_p$ the series $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges in \mathbb{Q}_p . Then explain what happens for p = 2.