Math 204B: Number Theory
 UCSD, winter 2017
 Problem Set 2 (due Wednesday, February 2)

1. Explain how to deduce the usual Chinese remainder theorem for integers from the approximation theorem on \mathbb{Q}.
2. Let K be a field which is complete with respect to an absolute value. Let L be an algebraic extension of K which is not finite, but can be written the union of an infinite sequence of finite extensions. Prove that L is not complete.
3. The following constructive form of Hensel's lemma is useful in practice (e.g., for computer calculations). Let F be a field which is complete with respect to a nonarchimedean absolute value. Let \mathfrak{o}_{F} be the valuation ring of F. Let $P(x) \in \mathfrak{o}_{F}[x]$ be a (not necessarily monic) polynomial. Suppose that $\alpha \in \mathfrak{o}_{F}$ satisfies $|P(\alpha)|<\left|P^{\prime}(\alpha)\right|^{2}$. Set $\alpha_{0}=\alpha$ and

$$
\alpha_{n+1}=\alpha_{n}-\frac{P\left(\alpha_{n}\right)}{P^{\prime}\left(\alpha_{n}\right)} \quad(n=0,1, \ldots)
$$

Then the sequence α_{n} converges to a root of F. (Optional: explain what it means to say that this construction is "quadratically convergent.")
4. Let F be a field which is complete with respect to an absolute value. Let n be a positive integer. In this exercise, we consider the statement that "the roots of a degree- n polynomial over F vary continuously in the coefficients."
(a) Let $\alpha_{1}, \ldots, \alpha_{n} \in F$ be pairwise distinct elements and write the polynomial $P(T)=$ $\left(T-\alpha_{1}\right) \cdots\left(T-\alpha_{n}\right)$ as $T^{n}+a_{n-1} T^{n-1}+\cdots+a_{0}$. Prove that for every $\epsilon>0$, there exists $\delta>0$ such that if $b_{0}, \ldots, b_{n-1} \in F$ satisfy $\left|b_{i}-a_{i}\right|<\delta$ for all i, then there exist $\beta_{1}, \ldots, \beta_{n} \in F$ such that $\left|\alpha_{i}-\beta_{i}\right|<\epsilon$ for $i=1, \ldots, n . T^{n}+b_{n-1} T^{n-1}+\cdots+$ $b_{0}=\left(T-\beta_{1}\right) \cdots\left(T-\beta_{n}\right)$
(b) Prove that (a) can fail if we allow $\alpha_{1}, \ldots, \alpha_{n}$ not to be pairwise distinct. Hint: you can already find a counterexample with $n=2$.
5. With notation as in the previous exercise, suppose in addition that F is algebraically closed. Prove that part (a) of that exercise continues to hold if we allow $\alpha_{1}, \ldots, \alpha_{n}$ not to be pairwise distinct. Now the existence of the roots is clear, and the only issue is to order them so that $\left|\alpha_{i}-\beta_{i}\right|<\epsilon$ for $i=1, \ldots, n$.

