Math 204B: Number Theory UCSD, winter 2017 Problem Set 4 (due Wednesday, March 1)

- 1. Let *L* be the number field $\mathbb{Q}[\alpha]/(\alpha^4 + \alpha^2 + 3)$. Show that the 3-adic valuation *v* on \mathbb{Q} admits two extensions w_1, w_2 such that $e_{w_1/v} \neq e_{w_2/v}, f_{w_1/v} \neq f_{w_2/v}$.
- 2. Let L/K be an extension of number fields. Let \mathfrak{p} be a prime ideal of \mathfrak{o}_K and factor \mathfrak{po}_L into primes $\mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_n^{e_n}$. Prove that the extensions of the \mathfrak{p} -adic valuation v on K can be labeled w_1, \ldots, w_n in such a way that

$$e_{w_i/v} = e_i, \quad f_{w_i/v} = [\mathfrak{o}_L/\mathfrak{q}_i : \mathfrak{o}_K/\mathfrak{p}] \qquad (i = 1, \dots, n).$$

- 3. Let K be the field $\mathbb{F}_p((t))$. Let \overline{K} be an algebraic closure of K.
 - (a) Show that the maximal unramified subextension of \overline{K} is isomorphic to $\overline{\mathbb{F}}_{p}((t))$.
 - (b) Show that the maximal tamely ramified subextension of \overline{K} is isomorphic to $\bigcup_m \overline{\mathbb{F}}_p((t^{1/m}))$, where *m* runs over all positive integers not divisible by *p*.
- 4. With notation as in the previous exercise, show that \overline{K} is strictly larger than $\bigcup_m \overline{\mathbb{F}}_p((t^{1/m}))$, where *m* runs over all positive integers (including those divisible by *p*). Hint: consider the polynomial $P(x) = x^p x t^{-1}$.
- 5. Give, with justification, an example of a finite solvable group G which cannot occur as $\operatorname{Gal}(L/\mathbb{Q}_p)$ for any finite extension L of \mathbb{Q}_p .
- 6. Compute the higher ramification groups of $\mathbb{Q}_p(\zeta_{p^n})$ for p a prime and n a positive integer. (If you need the formula, see the exercises for Neukirch II.10.)
- 7. In this exercise, we prove the strong approximation theorem. Let K be a number field. Let S be a finite set of inequivalent (nontrivial) absolute values of K. Let v_0 be an absolute value inequivalent to each element of S. For each $v \in S$, choose $a_v \in K$. Then for each $\epsilon > 0$, there exists $x \in K$ such that

$$\begin{aligned} |x - a_v|_v < \epsilon \text{ for each } v \in S \\ |x|_v \le 1 \text{ for each } v \notin S \cup \{v_0\}. \end{aligned}$$