Math 204B: Number Theory
 UCSD, winter 2017
 Problem Set 4 (due Wednesday, March 1)

1. Let L be the number field $\mathbb{Q}[\alpha] /\left(\alpha^{4}+\alpha^{2}+3\right)$. Show that the 3-adic valuation v on \mathbb{Q} admits two extensions w_{1}, w_{2} such that $e_{w_{1} / v} \neq e_{w_{2} / v}, f_{w_{1} / v} \neq f_{w_{2} / v}$.
2. Let L / K be an extension of number fields. Let \mathfrak{p} be a prime ideal of \mathfrak{o}_{K} and factor $\mathfrak{p o}_{L}$ into primes $\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{n}^{e_{n}}$. Prove that the extensions of the \mathfrak{p}-adic valuation v on K can be labeled w_{1}, \ldots, w_{n} in such a way that

$$
e_{w_{i} / v}=e_{i}, \quad f_{w_{i} / v}=\left[\mathfrak{o}_{L} / \mathfrak{q}_{i}: \mathfrak{o}_{K} / \mathfrak{p}\right] \quad(i=1, \ldots, n)
$$

3. Let K be the field $\mathbb{F}_{p}((t))$. Let \bar{K} be an algebraic closure of K.
(a) Show that the maximal unramified subextension of \bar{K} is isomorphic to $\overline{\mathbb{F}}_{p}((t))$.
(b) Show that the maximal tamely ramified subextension of \bar{K} is isomorphic to $\bigcup_{m} \overline{\mathbb{F}}_{p}\left(\left(t^{1 / m}\right)\right)$, where m runs over all positive integers not divisible by p.
4. With notation as in the previous exercise, show that \bar{K} is strictly larger than $\bigcup_{m} \overline{\mathbb{F}}_{p}\left(\left(t^{1 / m}\right)\right)$, where m runs over all positive integers (including those divisible by p). Hint: consider the polynomial $P(x)=x^{p}-x-t^{-1}$.
5. Give, with justification, an example of a finite solvable group G which cannot occur as $\operatorname{Gal}\left(L / \mathbb{Q}_{p}\right)$ for any finite extension L of \mathbb{Q}_{p}.
6. Compute the higher ramification groups of $\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$ for p a prime and n a positive integer. (If you need the formula, see the exercises for Neukirch II.10.)
7. In this exercise, we prove the strong approximation theorem. Let K be a number field. Let S be a finite set of inequivalent (nontrivial) absolute values of K. Let v_{0} be an absolute value inequivalent to each element of S. For each $v \in S$, choose $a_{v} \in K$. Then for each $\epsilon>0$, there exists $x \in K$ such that

$$
\begin{aligned}
&\left|x-a_{v}\right|_{v}<\epsilon \text { for each } v \in S \\
&|x|_{v} \leq 1 \text { for each } v \notin S \cup\left\{v_{0}\right\} .
\end{aligned}
$$

