Math 203C (Number Theory), UCSD, spring 2015
 Dedekind zeta functions

Let K be a number field. We define the Dedekind zeta function of K as the Dirichlet series

$$
\zeta_{K}(s)=\sum_{n=1}^{\infty} \frac{a_{K}(n)}{n^{s}}
$$

where $a_{K}(n)$ counts the number of ideals of \mathfrak{o}_{K} of absolute norm n. We can also write this as a sum

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^{s}}
$$

where \mathfrak{a} runs over nonzero ideals of \mathfrak{o}_{K}. Either way, we get an Euler product factorization

$$
\zeta_{K}(s)=\prod_{p}\left(\sum_{n=0}^{\infty} \frac{a_{K}\left(p^{n}\right)}{p^{n s}}\right)=\prod_{\mathfrak{p}}\left(1-\frac{1}{\operatorname{Norm}(\mathfrak{p})^{s}}\right)^{-1}
$$

where p runs over rational primes and \mathfrak{p} over maximal ideals of \mathfrak{o}_{K}. From any of these expansions, we may see that $\zeta_{K}(s)$ is defined by an absolutely convergent Dirichlet series for $\operatorname{Re}(s)>1$.

For example, let $K=\mathbb{Q}\left(\zeta_{m}\right)$ be the m-th cyclotomic field. For each prime p not dividing m, let \mathfrak{p} be a prime of $\mathfrak{o}_{K}=\mathbb{Z}\left[\zeta_{m}\right]$ lying above p. Then the absolute Frobenius automorphism (p-powering) on $\mathfrak{o}_{K} / \mathfrak{p}$ takes ζ_{m} to ζ_{m}^{p}. Its order, which is also the degree of $\mathfrak{o}_{K} / \mathfrak{p}$ over \mathbb{F}_{p}, equals the order of p in the group $(\mathbb{Z} / m \mathbb{Z})^{*}$. Using this calculation, we may check that

$$
\prod_{\mathfrak{p} \mid p}\left(1-\frac{1}{\operatorname{Norm}(\mathfrak{p})^{s}}\right)^{-1}=\prod_{\chi}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

where χ runs over the Dirichlet characters of level m. In other words, $\zeta_{K}(s)$ equals the product of the L-functions $L(\chi, s)$ for all Dirichlet characters of level m together with finitely many additional Euler factors. This statement can be interpreted in terms of the representation theory of the group $\operatorname{Gal}(K / \mathbb{Q})$; it naturally generalizes to nonabelian Galois extensions, whose zeta functions factor into Artin L-functions. More on these later.

Returning to the general case, one has the following result, which we won't prove right now. (It is best proved using a version of the Poisson summation formula on the group of adèles of K, as in Tate's thesis. See the last chapter of Cassels-Fröhlich.)

Theorem 1. The function $\zeta_{K}(s)$ extends to a meromorphic function on all of \mathbb{C} with a simple pole at $s=1$ and no other poles. It also admits the functional equation $\Phi_{K}(s)=\Phi_{K}(1-s)$ where

$$
\Phi_{K}(s)=\Gamma(s / 2)^{r_{1}} \Gamma(s)^{r_{2}} 4^{-r_{2}}\left|d_{K}\right|^{s / 2} \pi^{-[K: Q] s / 2} \zeta_{K}(s)
$$

with (as usual) r_{1}, r_{2} being the number of real and complex places of K and d_{K} being the absolute discriminant of K.

As for the Riemann zeta, one can prove that $\zeta_{K}(s)$ has no zeroes on the line $\operatorname{Re}(s)=1$. I leave this as an exercise. The analogue of the Riemann Hypothesis is the following.

Conjecture 2. The zeroes of $\zeta_{K}(s)$ in the range $\operatorname{Re}(s) \in(0,1)$ all lie on the line $\operatorname{Re}(s)=1 / 2$. (Again, the only other zeroes are some trivial zeroes at negative integers imposed by the functional equation.)

I will at least try to say something about the following.
Theorem 3. The residue of $\zeta_{K}(s)$ at $s=1$ equals

$$
\frac{2^{r_{1}+r_{2}} \pi^{r_{2}} R_{K} h_{K}}{\omega_{K}\left|d_{K}\right|^{1 / 2}}
$$

where R_{K} equals the unit regulator of K, h_{K} equals the class number, and ω_{K} equals the number of roots of unity in K.

