Math 203C (Number Theory), UCSD, spring 2015 The Riemann hypothesis for function fields

Let K be a finite extension of $\mathbb{F}_{q}(t)$ for some prime power q in which \mathbb{F}_{q} is integrally closed. Previously, we talked about the zeta function of K and of the associated curve C, and we stated Weil's theorem that

$$
\zeta_{C}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $P(T)$ is a polynomial of degree $2 g$ (for g the genus of the curve, which is some nonnegative integer) with integer coefficients and complex roots all on the circle $|T|=q^{1 / 2}$ (i.e., $\operatorname{Re}(s)=1 / 2)$. Moreover, if I write $P(T)=P_{0}+P_{1} T+\cdots$, then $P_{0}=1$ and $P_{g+i}=$ $q^{i} P_{g-i}$; in other words,

$$
P(T)=q^{g} T^{2 g} P(1 /(q T))
$$

In these notes, we sketch the proof of this theorem. This discussion will not be selfcontained, because we need the Riemann-Roch theorem in the following form. By a divisor on C, we will mean a formal Galois-invariant \mathbb{Z}-linear combination of $\overline{\mathbb{F}}_{q}$-rational points of C. There is an obvious degree map from divisors to integers taking each point to 1 ; for example, for any $f \in C^{\times}$, the associated principal divisor

$$
(f)=\sum_{P} \operatorname{ord}_{P}(f)(P)
$$

has degree 0 . A divisor D is effective (written $D \geq 0$) if its coefficients are nonnegative; two divisors are equivalent if their difference is a principal divisor. A nontrivial fact we need is that the degree map surjects onto \mathbb{Z}; this would be false if we were working over a field which is not finite.

Theorem 1. There exist a nonnegative integer g and a divisor K of degree $2 g-2$ satisfying the following conditions.
(a) For each divisor D, there exists a nonnegative integer h_{D} such that the number of divisors D^{\prime} which are effective and equivalent to D is $\left(q^{h_{D}}-1\right) /(q-1)$.
(b) For each divisor D, we have

$$
h_{D}-h_{K-D}=\operatorname{deg}(D)+1-g .
$$

In particular, since $h_{D}=0$ whenever $\operatorname{deg}(D)<0$, we have $h_{D}=\operatorname{deg}(D)+1-g$ whenever $\operatorname{deg}(D) \geq 2 g-1$. Now write

$$
\zeta_{C}(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{q^{n s}}
$$

where a_{n} is the number of effective divisors of degree n. Since the degree map is surjective, for any $n \geq 2 g-1$, any equivalence class containing an effective divisor of degree n contains
$\left(q^{n+1-g}-1\right) /(q-1)$ such divisors. For $T=q^{-s}$ and h the order of the class group of C, we can then write $\zeta_{C}(s)$ as the sum of

$$
\sum_{n=2 g-1}^{\infty} h \frac{q^{n+1-g-1}-1}{q-1} T^{n}=\frac{q^{1-g}}{(q-1)(1-q T)}-\frac{h}{(q-1)(1-T)}
$$

plus a polynomial in T of degree at most $2 g-2$. This gives us the representation

$$
\zeta_{C}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $\operatorname{deg}(P) \leq 2 g$. Put $b_{n}=(q-1) a_{n}+1$ and write

$$
(q-1) P(T)(1-T)(1-q T)=\sum_{n=0}^{2 g-1}\left((q-1) b_{n}-(q+1) b_{n-1}+q b_{n-2}\right) .
$$

Substituting $1 /(q T)$ for T and using the equality $b_{n}=q^{1-g} b_{2 g-2-n}$ from Riemann-Roch, we deduce the symmetry property of P.

Now for the Riemann hypothesis. If we write $P(T)=\left(1-\alpha_{1} T\right) \cdots\left(1-\alpha_{2 g} T\right)$ with $\alpha_{i} \in \mathbb{C}$, we are supposed to prove that

$$
\left|\alpha_{1}\right|=\cdots=\left|\alpha_{2 g}\right|=q^{1 / 2} .
$$

We will first reduce this problem to a formally simpler talk. First, note that

$$
\# C\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-\alpha_{1}^{n}-\cdots-\alpha_{2 g}^{n} .
$$

Consequently, on one hand, knowing RH would imply that

$$
-2 g \sqrt{q} \leq \# C\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1 \leq 2 g q^{n / 2}
$$

On the other hand, if we can show that there exists any $C>0$ such that

$$
\# C\left(\mathbb{F}_{q^{n}}\right) \geq q^{n}-C q^{n-2}
$$

for all sufficiently large n, then this would imply RH. Namely, sort the α_{i} so that $\left|\alpha_{1}\right| \geq$ $\cdots \geq\left|\alpha_{2 g}\right|$. By symmetry, if these norms are not all equal to \sqrt{q}, then $\left|\alpha_{1}\right|>\sqrt{q}$. Now let i be the largest index such that $\left|\alpha_{1}\right|=\cdots=\left|\alpha_{i}\right|$; then by an elementary argument, for any $\epsilon>0$ we can find infinitely many n such that for $j=1, \ldots, i$,

$$
\left|1-\frac{\alpha_{j}^{n}}{\left|\alpha_{j}^{n}\right|}\right|<\epsilon .
$$

But this easily yields a contradiction against the assumed bound.
Unfortunately, proving lower bounds on point counts is hard; it is much easier to get upper bounds. Fortunately, one can actually convert upper bounds into lower bounds! This
is most easily seen for the example of a hyperelliptic curve $C: y^{2}=Q(x)$. For t a quadratic nonresidue in $\mathbb{F}_{q^{n}}$, the quadratic twist curve $C^{\prime}: t y^{2}=Q(x)$ has the property that

$$
\# C\left(\mathbb{F}_{q^{n}}\right)+\# C^{\prime}\left(\mathbb{F}_{q^{n}}\right)=2 q^{n}+2,
$$

so $\# C\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1$ and $\# C^{\prime}\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1$ have equal magnitude but opposite sign.
For general C, one must make a slightly more complicated argument. First, let D be the curve whose function field is the Galois closure of K over $\mathbb{F}_{q}(t)$; then one can show that $\zeta_{C}(s)$ divides $\zeta_{D}(s)$, so RH for D implies RH for C. (This divisibility amounts to the fact that in the function field world, all Artin L-functions are known to admit analytic continuation! This can also be shown using Riemann-Roch.) So we reduce to the case where K is Galois over $\mathbb{F}_{q}(t)$. In this case, one can make a similar argument using twists defined in terms of the automorphisms of K over $\mathbb{F}_{q}(t)$, to reduce the lower bound problem about C to an upper bound problem about a family of related curves. (One does need to be a bit careful about uniformity of the arguments, since the family of related curves depends on n.)

Now to prove the upper bound.
Theorem 2. Suppose that q is a square and $q>(g+1)^{2}$. Then

$$
\# C\left(\mathbb{F}_{q}\right) \leq q+1+(2 g+1) q^{1 / 2}
$$

We may assume from the outset that C contains at least one \mathbb{F}_{q}-rational point (as otherwise there is nothing to check!), and choose one to label P. For $m \geq 0$, let H_{m} be the set of $f \in K$ for which $(f)+m P \geq 0$; that is, f has no poles away from P and at worst a pole of order m at P. If for some n we can find $f \in H_{n}$ which vanishes at every \mathbb{F}_{q}-rational point of C other than P, it will immediately follow that $\# C\left(\mathbb{F}_{q}\right) \leq n+1$.

Our strategy will be to take $f=\sum_{i=1}^{r} \nu_{i} s_{i}^{q}$ with $\nu_{i} \in H_{\ell}^{p^{\mu}}$ for some ℓ, μ, where $H_{\ell}^{p^{\mu}}=$ $\left\{f^{p^{\mu}}: f \in H_{\ell}\right\}$ (note that this is again an \mathbb{F}_{q}-vector space), and and $s_{i} \in H_{m}$ for some m. At any \mathbb{F}_{q}-rational point, f takes the same value as does $\sum_{i=1}^{r} \nu_{i} s_{i}$, so we need only force the latter to be zero, which we will achieve using linear algebra and Riemann-Roch.

We will further insist that s_{1}, \ldots, s_{r} be a basis of H_{m} such that $\operatorname{ord}_{P}\left(s_{1}\right)<\cdots<\operatorname{ord}_{P}\left(s_{r}\right)$. Provided that $\ell p^{\mu}<q$, this ensures that the linear map

$$
H_{\ell}^{p^{\mu}} \otimes_{\mathbb{F}_{q}} H_{m} \rightarrow H_{\ell p^{\mu}+q m}, \quad \sum_{i=1}^{r} \nu_{i} \otimes s_{i} \mapsto \sum_{i=1}^{r} \nu_{i} s_{i}^{q}
$$

of \mathbb{F}_{q}-vector spaces is injective: if $i<j$ and $\nu_{i} s_{i}^{q}, \nu_{j} s_{j}^{q}$ are both nonzero, then

$$
\left\lfloor\frac{\operatorname{ord}_{P}\left(\nu_{i} s_{i}^{q}\right)}{q}\right\rfloor=\operatorname{ord}_{P}\left(s_{i}\right)<\operatorname{ord}_{P}\left(s_{j}\right)=\left\lfloor\frac{\operatorname{ord}_{P}\left(\nu_{j} s_{j}^{q}\right)}{q}\right\rfloor
$$

so there can be no cancellation of poles.
Now define the map

$$
\delta: H_{\ell}^{p^{\mu}} \otimes_{\mathbb{F}_{q}} H_{m} \rightarrow H_{\ell p^{\mu}+m}, \quad \sum_{i=1}^{r} \nu_{i} \otimes s_{i} \mapsto \sum_{i=1}^{r} \nu_{i} s_{i} .
$$

By counting dimensions over \mathbb{F}_{q}, we see that

$$
\operatorname{dim}(\operatorname{ker}(\delta)) \geq \operatorname{dim}\left(H_{\ell}\right) \operatorname{dim}\left(H_{m}\right)-\operatorname{dim}\left(H_{\ell p^{\mu}+m}\right)
$$

Applying Riemann-Roch, we see that as long as $\ell p^{\mu}+m \geq 2 g-1$,

$$
\operatorname{dim}(\operatorname{ker}(\delta)) \geq(\ell+1-g)(m+1-g)-\left(\ell p^{\mu}+m+1-g\right)
$$

If we can choose ℓ, m, μ so that

$$
\mu=q^{1 / 2}, m=q^{1 / 2}+2 g, \ell>g+\frac{g}{g+1} q^{1 / 2},
$$

then $\operatorname{dim}(\operatorname{ker}(\delta))$ is forced to be positive. However, we also want $l<q^{1 / 2}$ so that $l p^{\mu}<q$; in order to be able to choose an integral value of ℓ, we need

$$
g+\frac{g}{g+1} q^{1 / 2}<q^{1 / 2}
$$

or equivalently $q>(g+1)^{2}$.
Now choose $\sum_{i=1}^{r} \nu_{i} \otimes s_{i} \in \operatorname{ker}(\delta)$ nonzero and put $f=\sum_{i=1}^{r} \mu_{i} s_{i}^{q}$, which is also nonzero as shown above. Since f is itself a p^{μ}-th power, its zero at each \mathbb{F}_{q}-rational point must have order divisible by p^{μ}. So in fact we get

$$
p^{\mu}\left(\# C\left(\mathbb{F}_{q}\right)-1\right) \leq \ell p^{\mu}+q m
$$

and so

$$
\# C\left(\mathbb{F}_{q}\right)-1 \leq \ell+q^{1 / 2} m \leq q^{1 / 2}+q^{1 / 2}\left(q^{1 / 2}+2 g\right)=q+(2 g+1) q^{1 / 2}
$$

as desired.

