Math 203C (Number Theory), UCSD, spring 2015 Zeta functions for function fields

Fix a prime number p. Let K be a finite extension of the rational function field $\mathbb{F}_p(t)$. As in the number field case, the integral closure \mathfrak{o}_K of $\mathbb{F}_p[t]$ in K is a Dedekind domain, and we may define the *Dedekind zeta function* of K as the Dirichlet series

$$\zeta_K(s) = \sum_{n=1}^{\infty} \frac{a_K(n)}{n^s}$$

where $a_K(n)$ counts the number of ideals of \mathfrak{o}_K of absolute norm n. We can also write this as a sum

$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^s}$$

where \mathfrak{a} runs over nonzero ideals of \mathfrak{o}_K . We get an Euler product factorization

$$\zeta_K(s) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{\operatorname{Norm}(\mathfrak{p})^s} \right)^{-1}$$

where p runs over rational primes and \mathfrak{p} over maximal ideals of \mathfrak{o}_K . From any of these expansions, we may see that $\zeta_K(s)$ is defined by an absolutely convergent Dirichlet series for $\operatorname{Re}(s) > 1$.

However, in this case one has a more geometric interpretation of this construction. Let \mathbb{F}_q be the integral closure of \mathbb{F}_p in K. Then K can be identified with the field of rational functions on a certain smooth affine algebraic curve C_0 over \mathbb{F}_q . Each prime ideal \mathfrak{p} of \mathfrak{o}_K has norm q^m for some positive integer m, so we can rewrite the Dirichlet series for $\zeta_K(s)$ as a power series in q^{-s} .

Lemma 1. We have an identity of formal power series in q^{-s} :

$$\zeta_K(s) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C_0(\mathbb{F}_{q^n})}{n} q^{-ns}\right).$$

Proof. Each prime ideal \mathfrak{p} of norm q^m gives rise to m distinct points on $\#C_0$ over \mathbb{F}_{q^m} , and hence also over $\mathbb{F}_{q^{mn}}$ for every positive integer n. Now note that

$$\sum_{\mathfrak{p}} \log \left(1 - \frac{1}{\operatorname{Norm}(\mathfrak{p})^s} \right)^{-1} = \sum_{\mathfrak{p}} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Norm}(\mathfrak{p})^{-ns}$$
$$= \sum_{m=1}^{\infty} \sum_{\mathfrak{p}:\operatorname{Norm}(\mathfrak{p})=q^m} \sum_{n=1}^{\infty} \frac{m}{mn} q^{-mns}$$
$$= \sum_{d=1}^{\infty} \left(\sum_{m|d} \sum_{\mathfrak{p}:\operatorname{Norm}(\mathfrak{p})=q^m} m \right) \frac{1}{n} q^{-ds}.$$

For example, if $K = \mathbb{F}_q(t)$, then C_0 is the affine line over \mathbb{F}_q , so $\#C_0(\mathbb{F}_{q^n}) = q^n$ for all n. We thus have

$$\zeta_K(s) = \exp\left(\sum_{n=1}^{\infty} \frac{q^n}{n} q^{-ns}\right) = (1 - q^{1-s})^{-1}.$$

In particular, $\zeta_K(s)$ extends to a meromorphic function on \mathbb{C} with a simple pole at s = 1 with no zeroes whatsoever! One discrepancy with the Riemann zeta function: there are also poles at $s = 1 + \frac{2\pi i n}{\log q}$ for all $n \in \mathbb{Z}$. As with Dedekind zeta functions, one can get something with a good functional equation

As with Dedekind zeta functions, one can get something with a good functional equation by adding Euler factors corresponding to completions of K restricting to the infinite place of $\mathbb{F}_p(t)$ to get a new function $\xi_K(s)$. The latter is the ∞ -adic absolute value: $|f|_{\infty} = p^{\operatorname{ord}_{\infty}(f)}$. Unlike in the number field case, though, these missing Euler factors have a similar shape as the finite ones; you just add one factor of $(1 - q^{-ms})$ for each infinite place with residue field \mathbb{F}_{q^m} . One then has an analogue of Lemma 1 where one counts points on the smooth projective completion C of C_0 . (For this reason, ξ_K is commonly denoted ζ_C and is itself called the zeta function of the curve C. For $K = \mathbb{F}_q(t)$, we get

$$\xi_K(s) = (1 - q^{-s})^{-1} (1 - q^{1-s})^{-1}$$

which satisfies $\xi_K(s) = q^{-1}\xi_K(1-s)$.

Theorem 1 (Weil). For any K, $\xi_K(s)$ extends to a meromorphic function on \mathbb{C} with simple poles at $s = \frac{2\pi i n}{\log q}$, $s = 1 + \frac{2\pi i n}{\log q}$ and no other poles. There is also a functional equation of the form

$$\xi_K(1-s) = q^{a+bs}\xi_K(s)$$

for certain constants a, b.

Better yet, the analogue of the Riemann hypothesis is a theorem! More on this later.

Theorem 2 (Weil). The zeroes of $\xi_K(s)$ all lie on the line $\operatorname{Re}(s) = \frac{1}{2}$.

For example, if C is an elliptic curve, then by results of Hasse we have

$$\zeta_K(s) = \frac{(1 - \alpha q^{-s})(1 - \beta q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

for some $\alpha, \beta \in \mathbb{C}$ which are complex conjugates of each other and have product q. In general,

$$\zeta_K(s) = \frac{P(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where $P(T) = P_0 + P_1T + \cdots + P_{2g}T^{2g}$ is a polynomial with integer coefficients of degree 2g, where g is the genus of the curve, $P_0 = 1$, $P_{g+i} = q^i P_{g-i}$, and the complex roots of P all have absolute value $q^{1/2}$.