Math 203C (Number Theory), UCSD, spring 2015 Zeta functions for function fields

Fix a prime number p. Let K be a finite extension of the rational function field $\mathbb{F}_{p}(t)$. As in the number field case, the integral closure \mathfrak{o}_{K} of $\mathbb{F}_{p}[t]$ in K is a Dedekind domain, and we may define the Dedekind zeta function of K as the Dirichlet series

$$
\zeta_{K}(s)=\sum_{n=1}^{\infty} \frac{a_{K}(n)}{n^{s}}
$$

where $a_{K}(n)$ counts the number of ideals of \mathfrak{o}_{K} of absolute norm n. We can also write this as a sum

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^{s}}
$$

where \mathfrak{a} runs over nonzero ideals of \mathfrak{o}_{K}. We get an Euler product factorization

$$
\zeta_{K}(s)=\prod_{\mathfrak{p}}\left(1-\frac{1}{\operatorname{Norm}(\mathfrak{p})^{s}}\right)^{-1}
$$

where p runs over rational primes and \mathfrak{p} over maximal ideals of \mathfrak{o}_{K}. From any of these expansions, we may see that $\zeta_{K}(s)$ is defined by an absolutely convergent Dirichlet series for $\operatorname{Re}(s)>1$.

However, in this case one has a more geometric interpretation of this construction. Let \mathbb{F}_{q} be the integral closure of \mathbb{F}_{p} in K. Then K can be identified with the field of rational functions on a certain smooth affine algebraic curve C_{0} over \mathbb{F}_{q}. Each prime ideal \mathfrak{p} of \mathfrak{o}_{K} has norm q^{m} for some positive integer m, so we can rewrite the Dirichlet series for $\zeta_{K}(s)$ as a power series in q^{-s}.

Lemma 1. We have an identity of formal power series in q^{-s} :

$$
\zeta_{K}(s)=\exp \left(\sum_{n=1}^{\infty} \frac{\# C_{0}\left(\mathbb{F}_{q^{n}}\right)}{n} q^{-n s}\right) .
$$

Proof. Each prime ideal \mathfrak{p} of norm q^{m} gives rise to m distinct points on $\# C_{0}$ over $\mathbb{F}_{q^{m}}$, and hence also over $\mathbb{F}_{q^{m n}}$ for every positive integer n. Now note that

$$
\begin{aligned}
\sum_{\mathfrak{p}} \log \left(1-\frac{1}{\operatorname{Norm}(\mathfrak{p})^{s}}\right)^{-1} & =\sum_{\mathfrak{p}} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Norm}(\mathfrak{p})^{-n s} \\
& =\sum_{m=1}^{\infty} \sum_{\mathfrak{p}: \operatorname{Norm}(\mathfrak{p})=q^{m}} \sum_{n=1}^{\infty} \frac{m}{m n} q^{-m n s} \\
& =\sum_{d=1}^{\infty}\left(\sum_{m \mid d \mathfrak{p}: \operatorname{Norm}(\mathfrak{p})=q^{m}} m\right) \frac{1}{n} q^{-d s} .
\end{aligned}
$$

For example, if $K=\mathbb{F}_{q}(t)$, then C_{0} is the affine line over \mathbb{F}_{q}, so $\# C_{0}\left(\mathbb{F}_{q^{n}}\right)=q^{n}$ for all n. We thus have

$$
\zeta_{K}(s)=\exp \left(\sum_{n=1}^{\infty} \frac{q^{n}}{n} q^{-n s}\right)=\left(1-q^{1-s}\right)^{-1} .
$$

In particular, $\zeta_{K}(s)$ extends to a meromorphic function on \mathbb{C} with a simple pole at $s=1$ with no zeroes whatsoever! One discrepancy with the Riemann zeta function: there are also poles at $s=1+\frac{2 \pi i n}{\log q}$ for all $n \in \mathbb{Z}$.

As with Dedekind zeta functions, one can get something with a good functional equation by adding Euler factors corresponding to completions of K restricting to the infinite place of $\mathbb{F}_{p}(t)$ to get a new function $\xi_{K}(s)$. The latter is the ∞-adic absolute value: $|f|_{\infty}=p^{\operatorname{ord}_{\infty}(f)}$. Unlike in the number field case, though, these missing Euler factors have a similar shape as the finite ones; you just add one factor of $\left(1-q^{-m s}\right)$ for each infinite place with residue field $\mathbb{F}_{q^{m}}$. One then has an analogue of Lemma 1 where one counts points on the smooth projective completion C of C_{0}. (For this reason, ξ_{K} is commonly denoted ζ_{C} and is itself called the zeta function of the curve C. For $K=\mathbb{F}_{q}(t)$, we get

$$
\xi_{K}(s)=\left(1-q^{-s}\right)^{-1}\left(1-q^{1-s}\right)^{-1}
$$

which satisfies $\xi_{K}(s)=q^{-1} \xi_{K}(1-s)$.
Theorem 1 (Weil). For any $K, \xi_{K}(s)$ extends to a meromorphic function on \mathbb{C} with simple poles at $s=\frac{2 \pi i n}{\log q}, s=1+\frac{2 \pi i n}{\log q}$ and no other poles. There is also a functional equation of the form

$$
\xi_{K}(1-s)=q^{a+b s} \xi_{K}(s)
$$

for certain constants a, b.
Better yet, the analogue of the Riemann hypothesis is a theorem! More on this later.
Theorem 2 (Weil). The zeroes of $\xi_{K}(s)$ all lie on the line $\operatorname{Re}(s)=\frac{1}{2}$.
For example, if C is an elliptic curve, then by results of Hasse we have

$$
\zeta_{K}(s)=\frac{\left(1-\alpha q^{-s}\right)\left(1-\beta q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

for some $\alpha, \beta \in \mathbb{C}$ which are complex conjugates of each other and have product q. In general,

$$
\zeta_{K}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $P(T)=P_{0}+P_{1} T+\cdots+P_{2 g} T^{2 g}$ is a polynomial with integer coefficients of degree $2 g$, where g is the genus of the curve, $P_{0}=1, P_{g+i}=q^{i} P_{g-i}$, and the complex roots of P all have absolute value $q^{1 / 2}$.

