Math 203C (Number Theory), UCSD, spring 2015 More about zeta functions for function fields

Let K be a finite extension of $\mathbb{F}_{q}(t)$ for some prime power q in which \mathbb{F}_{q} is integrally closed. Previously, we talked about the zeta function of K and of the associated curve C, and we stated Weil's theorem that

$$
\zeta_{C}(z)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $P(T)$ is a polynomial of degree $2 g$ (for g the genus of the curve, which is some nonnegative integer) with integer coefficients and complex roots all on the circle $|T|=q^{1 / 2}$ (i.e., $\operatorname{Re}(s)=1 / 2$). Moreover, if I write $P(T)=P_{0}+P_{1} T+\cdots$, then $P_{0}=1$ and $P_{g+i}=$ $q^{i} P_{g-i}$.

In case you want some concrete examples, take C to be a hyperelliptic curve by taking $K=\mathbb{F}_{q}(t)(\sqrt{Q(t)})$ where $Q(t)$ is a polynomial of degree d with no repeated roots. Then it can be shown that

$$
g=\left\lfloor\frac{d}{2}-1\right\rfloor .
$$

Or, take C to be a smooth curve in \mathbb{P}^{2} defined by a homogeneous polynomial of degree d; then it can be shown that

$$
g=\binom{d-1}{2} .
$$

Let me now state some more facts about this zeta function. For each positive integer n, we have

$$
\# C\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-\alpha_{1}^{n}-\cdots-\alpha_{2 g}^{n} ;
$$

in fact this can be deduced from the Riemann-Roch theorem, which implies that for $d \geq$ $2 g-1$, the number of effective divisors of degree d on C is $\left(q^{d+1-g}-1\right) /(q-1)$. (In fact this is the usual way to prove the rationality of ζ_{C}.) In particular, for $n=1$ we get the Weil bounds

$$
q+1-2 g \sqrt{q} \leq \# C\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For example, for $g=1$ we get $\# C\left(\mathbb{F}_{q}\right)=(\sqrt{q}-1)^{2}>0$, so every genus 1 curve over \mathbb{F}_{q} has a rational point. This becomes false if we either enlarge g or stop working over finite fields; however, we can still say that $\# C\left(\mathbb{F}_{q}\right)>0$ if g is not so large compared to q.

In the other direction, the upper bound is nearly optimal when q is large compared to g; in fact, there are many pairs (q, g) for which it is achieved. However, when q is small compared to g it turns out to be suboptimal; more on this later.

Theorem 1 (Class number formula). The order of the class group of C is $P(1)$.
Here the class group of C is not quite the same as the class group of \mathfrak{o}_{K} : it is the Picard group of degree 0 divisors (formal \mathbb{Z}-linear combinations of closed points) moduli principal
divisors (the ones measuring zeroes and poles of a rational function). For instance, if C is an elliptic curve, this coincides with the group law on rational points.

Interesting consequence: for $\alpha_{1}, \ldots, \alpha_{2 g}$ the roots of $P(T)$, the class number $h(C)$ satisfies

$$
(\sqrt{q}-1)^{2 g} \leq h(C) \leq\left|\prod_{i=1}^{2 g}\left(1-\alpha_{2 g}\right)\right| \leq(\sqrt{q}+1)^{2 g}
$$

For example, say we want to solve the class number one problem for curves; we can then immediately rule out all cases where $q>4$. Starting from this observation, Leitzel-MadanQueen solved the problem in the 1970s except that they missed a case which was only discovered in 2014! See http://arxiv.org/pdf/1406.5365v5.pdf.

