Math 203C (Number Theory), UCSD, spring 2015 The Riemann zeta function

For a complex number s with $\operatorname{Re}(s)>1$, the quantity $\zeta(s)$ is defined as the complex number computed by the absolutely convergent infinite sum

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

As noted by Euler, using the unique factorization of positive integers into primes, this expression can be rewritten as an absolutely convergent infinite product

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

More facts:

- The analytic continuation property: there is a unique extension of ζ to a meromorphic function $\zeta: \mathbb{C}-\{1\} \rightarrow \mathbb{C}$ with a simple pole at $s=1$. The function ζ is called the Riemann zeta function.
- The functional equation property: the values of ζ at s and $1-s$ determine each other. The cleanest way to write this is to define a modified zeta function

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

which then satisfies

$$
\xi(s)=\xi(1-s)
$$

The extra factors should be thought of as a missing term in Euler's infinite product corresponding to the archimedean place of \mathbb{R}.

- Special values: it is well known that $\zeta(2)=\pi^{2} / 6$. More generally, for n a positive integer

$$
\zeta(2 n)=\frac{(-1)^{n-1} 2^{2 n-1} B_{2 n}}{(2 n)!} \pi^{2 n}
$$

where $B_{2 n}$ are the sequence of Bernoulli numbers

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

This statement has a deeper interpretation in terms of algebraic K-theory. For other types of zeta functions, such interpretations will lead to many theorems and conjectures such as class number formulas, the conjecture of Birch and Swinnerton-Dyer, etc.

- Prime number theorem: the aforementioned properties of ζ can be used to prove the usual estimate on the distribution of prime numbers, as originally conjectured by Gauss: the number of prime numbers in the interval $[1, N]$ is asymptotic to $N / \log N$ as $N \rightarrow$ ∞. (A better approximation than $N / \log N$ is $\int_{2}^{N} d x / \log x$.)
- The Riemann hypothesis: notice that on one hand, the infinite product for $\zeta(s)$ cannot equal zero for $\operatorname{Re}(s)>1$; on the other hand, for $\operatorname{Re}(s)<0$, the only zeroes are the trivial zeroes at negative even integers coming from the functional equation (recall that Γ has poles at all negative integers). It is conjectured that all remaining zeroes satisfy $\operatorname{Re}(s)=1 / 2$. It is not hard to rule out zeroes with $\operatorname{Re}(s)=0,1$, but otherwise it is hard to prove much. This conjecture is equivalent to an improved error term in the prime number theorem, but more on this later.

