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A1 The coefficient of xn in the Taylor series of (1− x +
x2)ex for n = 0,1,2 is 1,0, 1

2 , respectively. For n ≥ 3,
the coefficient of xn is

1
n!
− 1

(n−1)!
+

1
(n−2)!

=
1−n+n(n−1)

n!

=
n−1

n(n−2)!
.

If n− 1 is prime, then the lowest-terms numerator is
clearly either 1 or the prime n−1 (and in fact the latter,
since n−1 is relatively prime to n and to (n−2)!). If n−
1 is composite, either it can be written as ab for some
a 6= b, in which case both a and b appear separately in
(n− 2)! and so the numerator is 1, or n− 1 = p2 for
some prime p, in which case p appears in (n− 2)! and
so the numerator is either 1 or p. (In the latter case,
the numerator is actually 1 unless p = 2, as in all other
cases both p and 2p appear in (n−2)!.)

A2 Let v1, . . . ,vn denote the rows of A. The determinant is
unchanged if we replace vn by vn− vn−1, and then vn−1
by vn−1− vn−2, and so forth, eventually replacing vk by
vk−vk−1 for k≥ 2. Since vk−1 and vk agree in their first
k−1 entries, and the k-th entry of vk− vk−1 is 1

k −
1

k−1 ,
the result of these row operations is an upper triangular
matrix with diagonal entries 1, 1

2−1, 1
3−

1
2 , . . . ,

1
n−

1
n−1 .

The determinant is then

n

∏
k=2

(
1
k
− 1

k−1

)
=

n

∏
k=2

(
−1

k(k−1)

)
=

(−1)n−1

(n−1)!n!
.

Note that a similar calculation can be made whenever
A has the form Ai j = min{ai,a j} for any monotone se-
quence a1, . . . ,an. Note also that the standard Gaussian
elimination algorithm leads to the same upper triangu-
lar matrix, but the nonstandard order of operations used
here makes the computations somewhat easier.

Remark: The inverse of A can be identified explicitly:
for n≥ 2, it is the matrix B given by

Bi j =



−1 i = j = 1
−2i2 1 < i = j < n
−(n−1)n i = j = n
i j |i− j|= 1
0 otherwise.

For example, for n = 5,

B =


−1 2 0 0 0
2 −8 6 0 0
0 6 −18 12 0
0 0 12 −32 20
0 0 0 20 −20

 .

Let C denote the matrix obtained from B by replacing
the bottom-right entry with −2n2 (for consistency with
the rest of the diagonal). Expanding in minors along
the bottom row produces a second-order recursion for
det(C) solving to det(C) = (−1)n(n!)2; a similar ex-
pansion then yields det(B) = (−1)n−1n!(n−1)!.

Remark: This problem and solution are due to one of
us (Kedlaya). The statement appears in the comments
on sequence A010790 (i.e., the sequence (n−1)!n!) in
the On-Line Encyclopedia of Integer Sequences (http:
//oeis.org), attributed to Benoit Cloitre in 2002.

A3 First solution: Using the identity

(x+ x−1)2−2 = x2 + x−2,

we may check by induction on k that ak = 22k
+2−2k

; in
particular, the product is absolutely convergent. Using
the identities

x2 +1+ x−2

x+1+ x−1 = x−1+ x−1,

x2− x−2

x− x−1 = x+ x−1,

we may telescope the product to obtain

∞

∏
k=0

(
1− 1

ak

)
=

∞

∏
k=0

22k −1+2−2k

22k
+2−2k

=
∞

∏
k=0

22k+1
+1+2−2k+1

22k
+1+2−2k · 22k −2−2k

22k+1 −22−k−1

=
220 −2−20

220
+1+2−20 =

3
7
.

Second solution: (by Catalin Zara) In this solution, we
do not use the explicit formula for ak. We instead note
first that the ak form an increasing sequence which can-
not approach a finite limit (since the equation L= L2−2
has no real solution L > 2), and is thus unbounded. Us-
ing the identity

ak+1 +1 = (ak−1)(ak +1),
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one checks by induction on n that

n

∏
k=0

(
1− 1

ak

)
=

2
7

an+1 +1
a0a1 · · ·an

.

Using the identity

a2
n+2−4 = a4

n+1−4a2
n+1,

one also checks by induction on n that

a0a1 · · ·an =
2
3

√
a2

n+1−4.

Hence

n

∏
k=0

(
1− 1

ak

)
=

3
7

an+1 +1√
a2

n+1−4

tends to 3
7 as an+1 tends to infinity, hence as n tends to

infinity.

A4 First solution: Let an = P(X = n); we want the min-
imum value for a0. If we write Sk = ∑

∞
n=1 nkan, then

the given expectation values imply that S1 = 1, S2 = 2,
S3 = 5. Now define f (n)= 11n−6n2+n3, and note that
f (1) = f (2) = f (3) = 6 and f (n) > 0 for n ≥ 4; thus
4 = 11S1− 6S2 + S3 = ∑

∞
n=1 f (n)an ≥ 6(a1 + a2 + a3).

It follows that a0 ≥ 1− a1− a2− a3 ≥ 1
3 . Equality is

achieved when a0 =
1
3 , a1 =

1
2 , a3 =

1
6 , and an = 0 for

all other n, and so the answer is 1
3 .

Second solution: (by Tony Qiao) Define the probabil-
ity generating function of P as the power series

G(z) =
∞

∑
n=0

P(x = n)zn.

We compute that G(1) = G′(1) = G′′(1) = G′′′(1) = 1.
By Taylor’s theorem with remainder, for any x ∈ [0,1],
there exists c ∈ [x,1] such that

G(x) = 1+(x−1)+
(x−1)2

2!
+

(x−1)3

3!
+

G′′′′(c)
4!

(x−1)4.

In particular, G(0) = 1
3 +

1
24 G′′′′(c) for some c ∈ [0,1].

However, since G has nonnegative coefficients and c≥
0, we must have G′′′′(c)≥ 0, and so G(0)≥ 1

3 . As in the
first solution, we see that this bound is best possible.

A5 First solution: Suppose to the contrary that there exist
positive integers i 6= j and a complex number z such that
Pi(z) = Pj(z) = 0. Note that z cannot be a nonnegative
real number or else Pi(z),Pj(z) > 0; we may put w =

z−1 6= 0,1. For n ∈ {i+1, j+1} we compute that

wn = nw−n+1, wn = nw−n+1;

note crucially that these equations also hold for n ∈
{0,1}. Therefore, the function f : [0,+∞)→ R given
by

f (t) = |w|2t − t2 |w|2 +2t(t−1)Re(w)− (t−1)2

satisfies f (t) = 0 for t ∈ {0,1, i+1, j+1}. On the other
hand, for all t ≥ 0 we have

f ′′′(t) = (2log |w|)3 |w|2t > 0,

so by Rolle’s theorem, the equation f (3−k)(t) = 0 has at
most k distinct solutions for k = 0,1,2,3. This yields
the desired contradiction.

Remark: By similar reasoning, an equation of the form
ex = P(x) in which P is a real polynomial of degree
d has at most d + 1 real solutions. This turns out to
be closely related to a concept in mathematical logic
known as o-minimality, which in turn has deep conse-
quences for the solution of Diophantine equations.

Second solution: (by Noam Elkies) We recall a result
commonly known as the Eneström-Kakeya theorem.

Lemma 1. Let

f (x) = a0 +a1x+ · · ·+anxn

be a polynomial with real coefficients such that 0 < a0 ≤ a1 ≤
·· · ≤ an. Then every root z ∈ C of f satisfies |z| ≤ 1.

Proof. If f (z) = 0, then we may rearrange the equality 0 =
f (z)(z−1) to obtain

anzn+1 = (an−an−1)zn + · · ·+(a1−a0)z+a0.

But if |z|> 1, then

|anzn+1| ≤ (|an−an−1|+ · · ·+ |a1−a0|)|z|n ≤ |anzn|,

contradiction.

Corollary 2. Let

f (x) = a0 +a1x+ · · ·+anxn

be a polynomial with positive real coefficients. Then every
root z ∈ C of f satisfies r ≤ |z| ≤ R for

r = min{a0/a1, . . . ,an−1/an}
R = max{a0/a1, . . . ,an−1/an}.

Proof. The bound |z| ≤ R follows by applying the lemma to
the polynomial f (x/R). The bound |z| ≥ r follows by applying
the lemma to the reverse of the polynomial f (x/r).

Suppose now that Pi(z) = Pj(z) = 0 for some z ∈ C and
some integers i< j. We clearly cannot have j = i+1, as
then Pi(0) 6= 0 and so Pj(z)−Pi(z) = (i+ 1)zi 6= 0; we
thus have j− i ≥ 2. By applying Corollary 2 to Pi(x),
we see that |z| ≤ 1− 1

i . On the other hand, by applying
Corollary 2 to (Pj(x)− Pi(x))/xi−1, we see that |z| ≥
1− 1

i+2 , contradiction.

Remark: Elkies also reports that this problem is his
submission, dating back to 2005 and arising from work
of Joe Harris. It dates back further to Example 3.7 in:
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Hajime Kaji, On the tangentially degenerate curves, J.
London Math. Soc. (2) 33 (1986), 430–440, in which
the second solution is given.

Remark: Elkies points out a mild generalization which
may be treated using the first solution but not the sec-
ond: for integers a < b < c < d and z ∈ C which is
neither zero nor a root of unity, the matrix 1 1 1 1

a b c d
za zb zc zd


has rank 3 (the problem at hand being the case a =
0,b = 1,c = i+1,d = j+1).

Remark: It seems likely that the individual polynomi-
als Pk(x) are all irreducible, but this appears difficult to
prove.

Third solution: (by David Feldman) Note that

Pn(x)(1− x) = 1+ x+ · · ·+ xn−1−nxn.

If |z| ≥ 1, then

n|z|n ≥ |z|n−1 + · · ·+1≥ |zn−1 + · · ·+1|,

with the first equality occurring only if |z| = 1 and the
second equality occurring only if z is a positive real
number. Hence the equation Pn(z)(1−z) = 0 has no so-
lutions with |z| ≥ 1 other than the trivial solution z = 1.
Since

Pn(x)(1− x)2 = 1− (n+1)xn +nxn+1,

it now suffices to check that the curves

Cn = {z ∈ C : 0 < |z|< 1, |z|n |n+1− zn|= 1}

are pairwise disjoint as n varies over positive integers.

Write z = u+ iv; we may assume without loss of gener-
ality that v≥ 0. Define the function

Ez(n) = n log |z|+ log |n+1− zn|.

One computes that for n ∈ R, E ′′z (n)< 0 if and only if

u− v−1
(1−u)2 + v2 < n <

u+ v−1
(1−u)2 + v2 .

In addition, Ez(0) = 0 and

E ′z(0) =
1
2

log(u2 + v2)+(1−u)≥ log(u)+1−u≥ 0

since log(u) is concave. From this, it follows that the
equation Ez(n) = 0 can have at most one solution with
n > 0.

Remark: The reader may notice a strong similarity be-
tween this solution and the first solution. The primary
difference is we compute that E ′z(0)≥ 0 instead of dis-
covering that Ez(−1) = 0.

Remark: It is also possible to solve this prob-
lem using a p-adic valuation on the field of alge-
braic numbers in place of the complex absolute value;
however, this leads to a substantially more compli-
cated solution. In lieu of including such a solution
here, we refer to the approach described by Victor
Wang here: http://www.artofproblemsolving.
com/Forum/viewtopic.php?f=80&t=616731.

A6 The largest such k is nn. We first show that this
value can be achieved by an explicit construction. Let
e1, . . . ,en be the standard basis of Rn. For i1, . . . , in ∈
{1, . . . ,n}, let Mi1,...,in be the matrix with row vectors
ei1 , . . . ,ein , and let Ni1,...,in be the transpose of Mi1,...,in .
Then Mi1,...,inN j1,..., jn has k-th diagonal entry eik · e jk ,
proving the claim.

We next show that for any families of matrices Mi,N j as
described, we must have k≤ nn. Let V be the n-fold ten-
sor product of Rn, i.e., the vector space with orthonor-
mal basis ei1⊗·· ·⊗ein for i1, . . . , in ∈ {1, . . . ,n}. Let mi
be the tensor product of the rows of Mi; that is,

mi =
n

∑
i1,...,in=1

(Mi)1,i1 · · ·(Mi)n,inei1 ⊗·· ·⊗ ein .

Similarly, let n j be the tensor product of the columns of
N j. One computes easily that mi ·n j equals the product
of the diagonal entries of MiN j, and so vanishes if and
only if i 6= j. For any ci ∈ R such that ∑i cimi = 0, for
each j we have

0 =

(
∑

i
cimi

)
·n j = ∑

i
ci(mi ·n j) = c j.

Therefore the vectors m1, . . . ,mk in V are linearly inde-
pendent, implying k ≤ nn as desired.

Remark: Noam Elkies points out that similar argument
may be made in the case that the Mi are m×n matrices
and the N j are n×m matrices.

B1 These are the integers with no 0’s in their usual base
10 expansion. If the usual base 10 expansion of N is
dk10k + · · ·+d0100 and one of the digits is 0, then there
exists an i ≤ k− 1 such that di = 0 and di+1 > 0; then
we can replace di+110i+1+(0)10i by (di+1−1)10i+1+
(10)10i to obtain a second base 10 over-expansion.

We claim conversely that if N has no 0’s in its usual
base 10 expansion, then this standard form is the unique
base 10 over-expansion for N. This holds by induc-
tion on the number of digits of N: if 1 ≤ N ≤ 9,
then the result is clear. Otherwise, any base 10 over-
expansion N = dk10k + · · ·+ d110+ d0100 must have
d0 ≡ N (mod 10), which uniquely determines d0 since
N is not a multiple of 10; then (N−d0)/10 inherits the
base 10 over-expansion dk10k−1 + · · ·+ d1100, which
must be unique by the induction hypothesis.

Remark: Karl Mahlburg suggests an alternate proof of
uniqueness (due to Shawn Williams): write the usual
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expansion N = dk10k + · · ·+d0100 and suppose di 6= 0
for all i. Let M = cl10l + · · ·+ c0100 be an over-
expansion with at least one 10. To have M = N, we
must have l ≤ k; we may pad the expansion of M with
zeroes to force l = k. Now define ei = ci − di; since
1≤ di ≤ 9 and 0≤ ci ≤ 10, we have 0≤ |ei| ≤ 9. More-
over, there exists at least one index i with ei 6= 0, since
any index for which ci = 10 has this property. But if i is
the largest such index, we have

10i ≤
∣∣ei10i∣∣= ∣∣∣∣∣− i−1

∑
j=0

ei10i

∣∣∣∣∣
≤

i−1

∑
j=0

∣∣ei|10i∣∣≤ 9 ·10i−1 + · · ·+9 ·100,

a contradiction.

B2 In all solutions, we assume that the function f is inte-
grable.

First solution: Let g(x) be 1 for 1 ≤ x ≤ 2 and −1
for 2 < x ≤ 3, and define h(x) = g(x)− f (x). Then∫ 3

1 h(x)dx = 0 and h(x) ≥ 0 for 1 ≤ x ≤ 2, h(x) ≤ 0
for 2 < x≤ 3. Now∫ 3

1

h(x)
x

dx =
∫ 2

1

|h(x)|
x

dx−
∫ 3

2

|h(x)|
x

dx

≥
∫ 2

1

|h(x)|
2

dx−
∫ 3

2

|h(x)|
2

dx = 0,

and thus
∫ 3

1
f (x)

x dx≤
∫ 3

1
g(x)

x dx= 2log2− log3= log 4
3 .

Since g(x) achieves the upper bound, the answer is
log 4

3 .

Reformulation: (by Karl Mahlburg and Karthik
Adimurthi) Since f is integrable, it can be expressed
in terms of the Hadamard basis

H0(x) =


1 x ∈ [1,2)
−1 x ∈ [2,3]
0 x /∈ [1,3]

Hn+1(x) = Hn(2(x−1)+1)+Hn(2(x−2)+1).

More precisely, we have f (x) = ∑n cnHn(x) for some cn

with |c0|+ |c1|+ | · · · | ≤ 1. Let gn =
∫ 3

1 (Hn(x)/x)dx; it
is easy to show that the gn are strictly decreasing in n.
Thus∫ 3

1
( f (x)/x)dx = c0g0 + c1g1 + · · · ≤ 1 ·g0 = log

4
3
.

Second solution: (Art of Problem Solving, user
libra_gold) Define the function F(x) =

∫ x
1 f (t)dt for

1 ≤ x ≤ 3; then F(1) = F(3) = 0 and F(x) ≤ min{x−

1,3− x}. Using integration by parts, we obtain∫ 3

1

f (x)
x

dx =
∫ 3

1

F(x)
x2 dx

≤
∫ 2

1

x−1
x2 dx+

∫ 3

2

3− x
x2 dx

= log
4
3
.

(Some minor adjustment is needed to make this com-
pletely rigorous, e.g., approximating f uniformly by
continuous functions.)

B3 First solution: Assume by way of contradiction that A
has rank at most 1; in this case, we can find rational
numbers a1, . . . ,am, b1, . . . ,bn such that Ai j = aib j for
all i, j. By deleting rows or columns, we may reduce to
the case where the ai’s and b j’s are all nonzero.

Recall that any nonzero rational number q has a unique
prime factorization

q =±2c13c25c3 · · ·

with exponents in Z. Set

c(q) = (c1,c2,c3, . . .).

Note that |aib j| is prime if and only if c(ai)+ c(b j) has
one entry equal to 1 and all others equal to 0. The con-
dition that m+ n distinct primes appear in the matrix
implies that the vector space{
∑

i
xic(ai)+∑

j
yic(b j) : xi,y j ∈ R,∑

i
xi = ∑

j
y j

}

contains a linearly independent set of size m+ n. But
that space evidently has dimension at most m+ n− 1,
contradiction.

Second solution: In this solution, we use standard
terminology of graph theory, considering only sim-
ple undirected graphs (with no self-loops or multiple
edges). We first recall the quick induction proof that
that a graph on k vertices with no cycles contains at
most k− 1 edges: for k = 1, the claim is trivially true
because there can be no edges. For k > 1, choose any
vertex v and let d be its degree. Removing the vertex v
and the edges incident to it leaves a disjoint union of d
different graphs, each having no cycles. If the numbers
of vertices in these graphs are k1, . . . ,kd , by induction
the total number of edges in the original graph is at most
(k1−1)+ · · ·+(kd−1)+d = k−1.

Returning to the original problem, suppose that A has
rank at most 1. Draw a bipartite graph whose vertices
correspond to the rows and columns of A, with an edge
joining a particular row and column if the entry where
they intersect has prime absolute value. By the previ-
ous paragraph, this graph must contain a cycle. Since
the graph is bipartite, this cycle must be of length 2k for
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some integer k ≥ 2 (we cannot have k = 1 because the
graph has no repeated edges). Without loss of gener-
ality, we may assume that the cycle consists of row 1,
column 1, row 2, column 2, and so on. There must then
exist distinct prime numbers p1, . . . , p2k such that

|A11|= p1, |A21|= p2, . . . , |Akk|= p2k−1, |A1k|= p2k.

However, since A has rank 1, the 2×2 minor A11Ai j−
Ai1A1 j must vanish for all i, j. If we put ri = |Ai1| and
c j =

∣∣Ai j/A11
∣∣, we have

p1 · · · p2k = (r1c1)(r2c1) · · ·(rkck)(r1ck)

= (r1c1 · · ·rkck)
2,

which contradicts the existence of unique prime factor-
izations for positive rational numbers: the prime p1 oc-
curs with exponent 1 on the left, but with some even
exponent on the right. This contradiction completes the
proof.

B4 Define the polynomial fn(x) = ∑
n
k=0 2k(n−k)xk. Since

f1(x) = 1+ x, f2(x) = 1+2x+ x2 = (1+ x)2,

the claim holds for for n = 1,2. For n≥ 3, we show that
the quantities

fn(−2−n), fn(−2−n+2), . . . , fn(−2n)

alternate in sign; by the intermediate value theorem, this
will imply that fn has a root in each of the n intervals
(−2−n,−2−n+2), . . . ,(−2n−2,−2n), forcing fn to have
as many distinct real roots as its degree.

For j ∈ {0, . . . ,n}, group the terms of fn(x) as

· · ·

+2( j−5)(n− j+5)x j−5 +2( j−4)(n− j+4)x j−4

+2( j−3)(n− j+3)x j−3 +2( j−2)(n− j+2)x j−2

+2( j−1)(n− j+1)x j−1 +2 j(n− j)x j +2( j+1)(n− j−1)x j+1

+2( j+2)(n− j−2)x j+2 +2( j+3)(n− j−3)x j+3

+2( j+4)(n− j−4)x j+4 +2( j+5)(n− j−5)x j+5

· · · .

Depending on the parity of j and of n− j, there may
be a single monomial left on each end. When evaluat-
ing at x =−2−n+2 j, the trinomial evaluates to 0. In the
binomials preceding the trinomial, the right-hand term
dominates, so each of these binomials contributes with
the sign of x j−2k, which is (−1) j. In the binomials fol-
lowing the trinomial, the left-hand term dominates, so
again the contribution has sign (−1) j.

Any monomials which are left over on the ends also
contribute with sign (−1) j. Since n ≥ 3, there ex-
ists at least one contribution other than the trinomial,
so fn(−2−n+2 j) has overall sign (−1) j, proving the
claimed alternation.

Remark: Karl Mahlburg suggests an alternate interpre-
tation of the preceding algebra: write 2− j2 fn(2−n+2 j) as

2− j2 −2−( j−1)2
+ · · ·+(−1) j−12−1 +(−1) j2−1

+(−1) j2−1 +(−1) j+12−1 +(−1) j+22−2 + · · · ,

where the two central terms (−1) j2−1 arise from split-
ting the term arising from x j. Then each row is an alter-
nating series whose sum carries the sign of (−1) j unless
it has only two terms. Since n≥ 3, one of the two sums
is forced to be nonzero.

Remark: One of us (Kedlaya) received this problem
and solution from David Speyer in 2009 and submitted
it to the problem committee.

B5 We show that Patniss wins if p = 2 and Keeta wins if
p > 2 (for all n). We first analyze the analogous game
played using an arbitrary finite group G. Recall that for
any subset S of G, the set of elements g∈G which com-
mute with all elements of S forms a subgroup Z(S) of
G, called the centralizer (or commutant) of S. At any
given point in the game, the set S of previously cho-
sen elements is contained in Z(S). Initially S = /0 and
Z(S) = G; after each turn, S is increased by one ele-
ment and Z(S) is replaced by a subgroup. In particular,
if the order of Z(S) is odd at some point, it remains
odd thereafter; conversely, if S contains an element of
even order, then the order of Z(S) remains even there-
after. Therefore, any element g ∈ G for which Z({g})
has odd order is a winning first move for Patniss, while
any other first move by Patniss loses if Keeta responds
with some h∈ Z({g}) of even order (e.g., an element of
a 2-Sylow subgroup of Z({g})). In both cases, the win
is guaranteed no matter what moves follow.

Now let G be the group of invertible n×n matrices with
entries in Z/pZ. If p> 2, then Z(S) will always contain
the scalar matrix −1 of order 2, so the win for Keeta is
guaranteed. (An explicit winning strategy is to answer
any move g with the move −g.)

If p = 2, we establish the existence of g ∈ G such that
Z({g}) has odd order using the existence of an irre-
ducible polynomial P(x) of degree n over Z/pZ (see
remark). We construct an n×n matrix over Z/pZ with
characteristic polynomial P(x) by taking the companion
matrix of P(x): write P(x) = xn +Pn−1xn−1 + · · ·+P0
and set

g =


0 0 · · · 0 −P0
1 0 · · · 0 −P1
0 1 · · · 0 −P2
...

...
. . .

...
...

0 0 · · · 1 −Pn−1

 .

In particular, det(g) = (−1)nP0 6= 0, so g ∈ G. Over
an algebraic closure of Z/pZ, g becomes diagonaliz-
able with distinct eigenvalues, so any matrix commut-
ing with g must also be diagonalizable, and hence of
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odd order. In particular, Z({g}) is of odd order, so Pat-
niss has a winning strategy.

Remark: It can be shown that in the case p = 2, the
only elements g ∈ G for which Z({g}) has odd order
are those for which g has distinct eigenvalues: in any
other case, Z({g}) contains a subgroup isomorphic to
the group of k× k invertible matrices over Z/2Z for
some k > 1, and this group has order (2k − 1)(2k −
2) · · ·(2k−2k−1).

Remark: We sketch two ways to verify the existence
of an irreducible polynomial of degree n over Z/pZ for
any positive integer n and any prime number p. One
is to use Möbius inversion to count the number of ir-
reducible polynomials of degree n over Z/pZ and then
give a positive lower bound for this count. The other
is to first establish the existence of a finite field F of
cardinality pn, e.g., as the set of roots of the polynomial
xpn−1 inside a splitting field, and then take the minimal
polynomial of a nonzero element of F over Z/pZ which
is a primitive (pn−1)-st root of unity in F (which exist
because the multiplicative group of F contains at most
one cyclic subgroup of any given order). One might be
tempted to apply the primitive element theorem for F
over Z/pZ, but in fact one of the preceding techniques
is needed in order to verify this result for finite fields,
as the standard argument that “most” elements of the
upper field are primitive breaks down for finite fields.

One may also describe the preceding analysis in terms
of an identification of F as a Z/pZ-vector space with
the space of column vectors of length n. Under such
an identification, if we take g to be an element of F−
{0} generating this group, then any element of Z({g})
commutes with all of F−{0} and hence must define an
F-linear endomorphism of F. Any such endomorphism
is itself multiplication by an element of F, so Z({g})
is identified with the multiplicative group of F, whose
order is the odd number 2n−1.

B6 Let us say that a linear function g on an interval is inte-
gral if it has the form g(x) = a+ bx for some a,b ∈ Z,
and that a piecewise linear function is integral if on ev-
ery interval where it is linear, it is also integral.

For each positive integer n, define the n-th Farey se-
quence Fn as the sequence of rational numbers in [0,1]
with denominators at most n. It is easily shown by in-
duction on n that any two consecutive elements r

s ,
r′
s′

of Fn, written in lowest terms, satisfy gcd(s,s′) = 1,
s+ s′ > n, and r′s− rs′ = 1. Namely, this is obvious
for n = 1 because F1 = 0

1 ,
1
1 . To deduce the claim for

Fn from the claim for Fn−1, let r
s ,

r′
s′ be consecutive el-

ements of Fn−1. If s+ s′ = n, then for m = r + r′ we
have r

s <
m
n < r′

s′ and the pairs r
s ,

m
n and m

n ,
r′
s′ satisfy the

desired conditions. Conversely, if s+ s′ > n, then we
cannot have r

s < m
n < r′

s′ for a ∈ Z, as this yields the

contradiction

n = (ms−nr)s′+(r′n−ms′)≥ s+ s′ > n;
hence r

s ,
r′
s′ remain consecutive in Fn.

Let fn : [0,1] → R be the piecewise linear function
which agrees with f at each element of Fn and is linear
between any two consecutive elements of Fn. Between
any two consecutive elements r

s ,
r′
s′ of Fn, fn coincides

with some linear function a+bx. Since s f ( r
s ),s

′ f ( r′
s′ )∈

Z, we deduce first that

b = ss′( f (
r′

s′
)− f (

r
s
))

is an integer of absolute value at most K, and second
that both as = s f ( r

s )− br and as′ = s′ f ( r′
s′ )− br′ are

integral. It follows that fn is integral.

We now check that if n > 2K, then fn = fn−1. For this,
it suffices to check that for any consecutive elements
r
s ,

m
n ,

r′
s′ in Fn, the linear function a0+b0x matching fn−1

from r
s to r′

s′ has the property that f (m
n ) = a0 + b0

m
n .

Define the integer t = n f (m
n )− a0n− b0m. We then

compute that the slope of fn from r
s to m

n is b0 + st,
while the slope of fn from m

n to r′
s′ is at most b0− s′t.

In order to have |b0 + st| , |b0− s′t| ≤ K, we must have
(s+ s′) |t| ≤ 2K; since s+ s′ = n > 2K, this is only pos-
sible if t = 0. Hence fn = fn−1, as claimed.

It follows that for any n > 2K, we must have fn =
fn+1 = · · · . Since the condition on f and K implies that
f is continuous, we must also have fn = f , completing
the proof.

Remark: The condition on f and K is called Lipschitz
continuity.

Remark: An alternate approach is to prove that for
each x ∈ [0,1), there exists ε ∈ (0,1− x) such that the
restriction of f to [x,x+ ε) is linear; one may then de-
duce the claim using the compactness of [0,1]. In this
approach, the role of the Farey sequence may also be
played by the convergents of the continued fraction of x
(at least in the case where x is irrational).

Remark: This problem and solution are due to one
of us (Kedlaya). Some related results can be proved
with the Lipschitz continuity condition replaced by suit-
able convexity conditions. See for example: Kiran S.
Kedlaya and Philip Tynan, Detecting integral polyhe-
dral functions, Confluentes Mathematici 1 (2009), 87–
109. Such results arise in the theory of p-adic differen-
tial equations; see for example: Kiran S. Kedlaya and
Liang Xiao, Differential modules on p-adic polyannuli,
J. Inst. Math. Jusssieu 9 (2010), 155–201 (errata, ibid.,
669–671).


