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Thanks to the organizers for the invitation

From: Alexey Zykin <alzykin@gmail.com>

Date: Thu, 2 Mar 2017 16:29:34 -1000

...

Dear Kiran,

I am writing you on behalf of the organizers of the

conference "Arithmetic, Geometry, Cryptography, and

Coding Theory" (AGCT-17) which is to take place in

May-June 2019 in Marseille, CIRM. Would you agree to

come as an invited speaker to the conference ?

...
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Review: L-functions of abelian varieties over number fields

Zeta functions of algebraic varieties

For X an algebraic variety over a finite field Fq, the zeta function of X is

Z (X ,T ) =
∏
x∈X◦

(1− T deg(x/Fq))−1 = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

where X ◦ denotes the closed points of X (i.e., Galois orbits of Fq-points).

For X smooth proper over Fq, we have

Z (X ,T ) =
P1(T ) · · ·P2g−1(T )

P0(T ) · · ·P2g (T )

where Pi (T ) is (the reverse of) a qi -Weil polynomial:

Pi (T ) has integer coefficients and its constant term is 1.

The roots of Pi (T ) in C all lie on the circle |T | = q−i/2.
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Review: L-functions of abelian varieties over number fields

Curves and abelian varieties

When X is a (smooth, proper, geometrically integral) curve of genus g ,

P0(T ) = 1− T , P2(T ) = 1− qT ,

P1(T ) is of degree 2g , and P1(q−1/2T ) is palindromic.

When X is an abelian variety of dimension g , P1(T ) is of degree 2g ,
P1(q−1/2T ) is palindromic, and Pi (T ) = ∧iP1(T ). That is, if P1 has
roots α1, . . . , α2g , then Pi has roots

αj1 · · ·αji (1 ≤ j1 < · · · < ji ≤ 2g).

The values of P1 for a curve and its Jacobian coincide.
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Review: L-functions of abelian varieties over number fields

L-functions

For A an abelian variety over a number field K with ring of integers oK , its
(incomplete) L-function is the Dirichlet series

L(A, s) =
∏
p

Lp(Norm(p)−s)−1

where p runs over prime ideals of oK at which A has good reduction,
Norm(p) = #(oK/p) is the absolute norm, and Lp(T ) is the factor P1(T )
of the zeta function of the reduction of A modulo p.

For example, if A is an elliptic curve over Q, this is the usual expression

L(A, s) =
∏
p

(1− app−s + p1−2s)−1, ap = p + 1−#A(Fp).

In general, L(A, s) converges absolutely for Re(s) > 3/2 but is expected to
admit a meromorphic continuation to C (more on this later).
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The generalized Sato-Tate conjecture

Distribution of Euler factors

With the functional equation in mind, we renormalize the L-polynomials:

Lp(T ) = Lp(Norm(p)−1/2T ) = 1 + a1T + · · ·+ a2g−1T 2g−1 + T 2g .

This polynomial is determined by the point (a1, . . . , ag ) which lies in a
bounded region of Rg . It is natural to ask whether these points admit a
limiting distribution as p varies, and if so what this can be.

For E/K an elliptic curve, there are conjecturally∗ 3 possible distributions,
each corresponding to traces of random matrices:

one when E has CM defined over K (matrices in U(1));

one when E has CM not defined over K (matrices in N(U(1));

one when E does not have CM (matrices in SU(2)).

For illustrations, see https://math.mit.edu/~drew.
∗The CM cases hold by results of Hecke. The non-CM case is the Sato-Tate

conjecture and is known when K is totally real or a CM field, by work of many authors.
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The generalized Sato-Tate conjecture

The Sato-Tate group of an abelian variety

Assume the Mumford-Tate conjecture† for A. Then there is a natural
(but elaborate) construction of a compact Lie group ST(A) contained in
USp(2g) and, for each p, a conjugacy class Frobp in ST(A) with charpoly
Lp(T ). One conjectures (after Serre) that the Frobp are equidistributed
with respect to (the image of) Haar measure.

This reduces to a statement about analytic continuation of the L-functions
associated to irreducible representations of ST(A). Besides CM cases, this
is only known when it can be deduced via potential automorphy of Galois
representations (as for elliptic curves over totally real or CM fields).

For dim(A) ≤ 3, ST(A) can be computed from the data of the R-algebra
End(AQ)R := End(AQ)⊗Z R and its GQ-action. This data can in principle
be computed rigorously (Costa–Mascot–Sijsling–Voight).

†For any prime `, the image of the `-adic Galois representation of A has finite index
in the maximal group allowed by the Hodge structure. This holds for dim(A) ≤ 3.
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The generalized Sato-Tate conjecture

The connected and finite parts of the Sato-Tate group

There is a canonical exact sequence

1→ ST(A)◦ → ST(A)→ π0(ST(A))→ 1

where ST(A)◦ is the identity component (and hence connected) and
π0(ST(A)) is the component group (and hence finite).

The group ST(A)◦ depends only on AQ. It is equivalent data to the
Mumford-Tate group (determined by the Hodge structure).

The group π0(ST(A)) is the Galois group of a certain finite extension
L/K . For dim(A) ≤ 3, L is the endomorphism field of A: the minimal
extension for which End(AL) = End(AQ).

For example, if dim(A) = 1 and A has CM by a quadratic field M not in
K , then L = MK and ST(A)/ ST(A)◦ = N(U(1))/U(1) ∼= Gal(MK/K ).
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The generalized Sato-Tate conjecture

Aside: a motivic generalization

The conjectural equidistribution of Frobenius classes in ST(A) is a special
case of a conjecture about an arbitrary motive‡ formulated by Serre. The
group ST(A) is derived from the motivic Galois group.

In the special case of a motive of weight 0 (Artin motive), the motivic
Galois group is just the usual Galois group, and the conjecture specializes
to the Chebotarev density theorem.

There are many classes of motives of weight > 1 for which classification of
Sato-Tate groups is of current interest (e.g., K3 surfaces), but those are
topics for another day.

‡I ignore here the differences between various motivic categories, as Serre did.
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Sato-Tate groups of abelian surfaces and threefolds

The case of surfaces§

Theorem (Fité–K–Rotger–Sutherland, 2012)

There are 52 conjugacy classes of closed subgroups of USp(4) which occur
as ST(A) for some abelian surface A over some number field K .

This includes 6 options for ST(A)◦; see next slide.

#π0(ST(A)) divides 48 = 24 × 3 (and this value occurs).

The 52 cases correspond to distinct distributions of Lp.

The theorem is quantified over all K . If we require K = Q, then 34
cases occur. If we require K to be totally real, then 35 cases occur.

There is a field K over which all 52 cases occur (Fité–Guitart).

Nothing changes if we restrict to principally polarized abelian surfaces
or even Jacobians. FKRS give explicit genus 2 curves in all cases.

§This grew from work of K–Sutherland presented at AGCT in 2007; the collaboration
with Fité and Rotger was catalyzed by Serre.
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Sato-Tate groups of abelian surfaces and threefolds

Identity components vs. extensions: the case of surfaces

End(AQ)R ST(A)◦ Extensions Maximal

R USp(4) 1 1
R× R SU(2)× SU(2) 2 1
C× R U(1)× SU(2) 2 1
C× C U(1)× U(1) 5 2
M2(R) SU(2)2 10 2
M2(C) U(1)2 32 2

Total 52 9

Here ∗2 denotes the diagonal embedding.

Warning: if A is geometrically simple, ST(A)◦ can still be decomposable
because it only depends on End(AQ)R. For example, if A has CM by a
quartic field K , then End(AQ)R ∼= K ⊗Q R ∼= C× C.
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Sato-Tate groups of abelian surfaces and threefolds

The case of threefolds

Theorem (Fité–K–Sutherland, in progress)

There are 410 conjugacy classes of closed subgroups of USp(6) which
occur as ST(A) for some abelian threefold A over some number field K .

This includes 14 options for ST(A)◦ (Moonen–Zarhin).

#π0(ST(A)) divides¶ one of 192 = 26 × 3, 336 = 24 × 3× 7,
432 = 24 × 33 (and these values occur).

The 410 cases correspond to only 409 distinct distributions of Lp.
The two cases that collide have distinct component groups.

We do not know what happens if we restrict K .

Nothing changes if we require a principal polarization, but we do not
yet know what happens for Jacobians. More on this later.

¶This refines earlier estimates by Silverberg and Guralnick-K.
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Sato-Tate groups of abelian surfaces and threefolds

Identity components vs. extensions: the case of threefolds

End(AQ)R ST(A)◦ Extensions Maximal

R USp(6) 1 1
C U(3) 2 1

R× R SU(2)× USp(4) 1 1
C× R U(1)× USp(4) 2 1

R× R× R SU(2)× SU(2)× SU(2) 4 1
C× R× R U(1)× SU(2)× SU(2) 5 1
C× C× R U(1)× U(1)× SU(2) 5 2
C× C× C U(1)× U(1)× U(1) 13 3
R×M2(R) SU(2)× SU(2)2 10 2
R×M2(C) SU(2)× U(1)2 32 2
C×M2(R) U(1)× SU(2)2 31 2
C×M2(C) U(1)× U(1)2 122 2

M3(R) SU(2)3 11 2
M3(C) U(1)3 171 12
Total 410 33
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Some notes on the classification for abelian threefolds

An initial subdivision

For each candidate G ◦ for ST(A)◦, candidates for G correspond to
conjugacy classes of finite subgroups of N/G ◦ where N is the normalizer
of G ◦ in USp(6). We distinguish four subcases.

Indecomposable: G ◦ = USp(6),U(3). In these cases, the only
options are USp(6),U(3),N(U(3)).

Split product: G ◦ factors as a nontrivial product G ◦1 × G ◦2 with no
shared factors between the two sides (i.e., U(1)× ∗ × SU(2) or
∗ × ∗2). In these cases, N splits as N1 × N2, so we can reduce to the
classification for elliptic curves and abelian surfaces.

Triple products: G ◦ = SU(2)× SU(2)× SU(2),U(1)× U(1)× U(1).
In these cases, N/G ◦ is finite.

Triple diagonals: G ◦ = SU(2)3,U(1)3. In these cases, N/G ◦ is
infinite, but there is a bound on the order of elements in N/G ◦

coming from the rationality condition (see below).
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Some notes on the classification for abelian threefolds

The upper bound: a group-theoretic classification

For each candidate G ◦ for ST(A)◦, we identify all extensions of G ◦ within
USp(6) satisfying the rationality condition: for every representation of
USp(6), the average trace on each coset of G ◦ is in Z.

This gives the correct upper bound except when G ◦ includes multiple
factors of U(1), in which case one must rule out some cases using
Shimura’s theory of CM types. (For G ◦ = U(1)× U(1)× U(1),
[N : G ◦] = 48 but [G : G ◦] ≤ 8.)

Most of the work occurs when G ◦ = U(1)3; in this case N = U(3) o C2.
The relevant subgroups of U(3)/U(1)3 are found using the
Blichfeldt–Dickson–Miller classfication of finite subgroups of PSU(3). For
each such subgroup, the C2-extensions are described (painfully) in terms
of the normalizer within U(3)/U(1)3.
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Some notes on the classification for abelian threefolds

The lower bound: realization by PPAVs

By base extension, for each G ◦ it suffices to realize each maximal
candidate for G using some principally polarized abelian threefold over Q.

For G ◦ indecomposable, use generic hyperelliptic and Picard curves.

For G ◦ a split product, use products of lower-dimensional examples.
In all cases except G ◦ = U(1)× U(1)2, we also find explicit examples
of genus 3 curves.

For G ◦ = SU(2)× SU(2)× SU(2),U(1)× U(1)× U(1), SU(2)3, we
find explicit examples of genus 3 curves.

For G ◦ = U(1)3, we realize G by twisting the cube of an elliptic curve
with CM by an imaginary quadratic field M (then making an isogeny
to get a principal polarization). The twist uses a Galois cocycle
valued in a subgroup‖ of GL(3, oM) with projective image G/G ◦.

‖These are almost all complex reflection groups, which makes it easy to solve the
embedding problem needed to construct the cocycle.

Kiran S. Kedlaya Sato-Tate groups of abelian threefolds CIRM, Luminy, June 11, 2019 20 / 37



Some notes on the classification for abelian threefolds

Moment (and other) statistics

For G a closed subgroup of USp(6) and e1, e2, e3 nonnegative integers, the
moment Me1,e2,e3 of G can be interpreted either as:

the expected value of ae1
1 ae2

2 ae3
3 where 1 + a1T + · · ·+ T 6 is the

charpoly of a random element of G ;

the dimension of the G -fixed subspace of
(C6)⊗e1 ⊗ (∧2C6)⊗e2 ⊗ (∧3C6)⊗e3 . (This is a nonnegative integer!)

For our 410 groups, we obtain 409 distinct collections∗∗ of moments. The
collision comes from two cases with identity component U(1)3 whose π0’s
are distinct groups of order 54 with a common index-2 subgroup.

When comparing to L-function data, it is useful to also record the density
of points on which a1, a2, a3 are constant; e.g., for a non-CM elliptic curve,
a1 = 0 with density 1/2. (By parity, only the value 0 can occur for a1, a3

with positive density, but a2 can take other integer values.)

∗∗It suffices to consider triples with e1 + e2 + e3 ≤ 6.
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Computational evidence

Into the cloud

We have made several extensive tabulations of genus 3 curves over Q to
look for exotic Sato-Tate groups (and to test the completeness of the
classification). I describe one of these here. We have also done specialized
searches for hyperelliptic and Picard curves, and are working on other
families with automorphisms (e.g., see
Lercier–Ritzenthaler–Rovetta-Sijsling, Lorenzo Garćıa).

We used Google Cloud Platform to process 1017 quartic polynomials,
looking for smooth curves with discriminant < 109 or divisible only by
2, 3, 5, 7. This took 3 hours of wall time, using up to 1.8× 106 vCPUs,
and yielded 3.3× 108 polynomials (representing 3.6× 106 distinct
isomorphism classes). This data is of independent interest, and should find
its way into the LMFDB someday (compare Sutherland, ANTS 2018).
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Computational evidence

Visualization of a Google Cloud Platform run
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Computational evidence

Heuristic calculation of endomorphism algebras

For each of the 3.6× 106 curves from GCP, we compute Lp(T ) for
p < 500 (by point counting) and check whether for one of ` = 2, 3, 5, the
Lp(T )’s cannot be matched with a subset of a maximal subgroup of
GSp(6,F`); if so, the Sato-Tate group must be USp(6). Setting such cases
aside yields 6× 105 curves requiring further analysis. (Aside: a handful of
these also have Sato-Tate group USp(6); these may also be of interest!)

We then perform a heuristic calculation of the endomorphism algebra
using the method (and code) of Costa–Mascot–Sijsling–Voight; this uses
code of Neurohr to compute period lattices over C to high precision.

We plan to add to this (once suitable code is available):

rigorous computation of endomorphism algebras;

computation of Lp(T ) for p ≤ 220 (say) to match moments and
densities. (For hyperelliptic curves, use Sutherland’s smalljac.)
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Fantastic curves and where to find them

Gotta catch ’em all!

Of the 410 possible Sato–Tate groups for abelian threefolds, the 33
maximal ones (for inclusions of finite index) occur for principally polarized
abelian threefolds over Q. Can we find explicit curves of genus 3 over Q
for all 33 cases? If so, it would follow that every possible Sato-Tate group
of an abelian threefold occurs for some genus 3 curve over some K .

Theorem (Fité–K–Sutherland, in progress)

For G a maximal Sato–Tate group for abelian threefolds with
G ◦ 6= U(1)× U(1)2,U(1)3, we have an explicit curve C of genus 3 over Q
with ST(Jac(C )) ∼= G .

For G ◦ ∼= U(1)3, we have explicit examples in 3 of the 12 cases with
G ◦ ∼= U(1)3, and existence arguments in a few more cases.

We describe here some techniques that can be used to identify suitable
examples and/or target our cloud searches.
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Fantastic curves and where to find them

Numerical reconstruction from periods

One can construct abelian varieties with exotic endomorphism algebras by
making high-precision computations with their period lattices and
polarizations, as in the heuristic computation of endomorphism algebras.

This has been done successfully in numerous cases, including:

CM curves of genus 2 (van Wamelen);

CM Picard curves of genus 3 (Koike–Weng);

RM curves of genus 2 (Kumar–Mukamel);

CM hyperelliptic curves of genus 3
(Balakrishnan–Ionica–Lauter–Vincent);

CM plane quartic curves
(Kılıçer–Labrande–Lercier–Ritzenthaler–Sijsling–Streng).

The upcoming thesis of Hanselman (under Sijsling) is in this direction.
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Fantastic curves and where to find them

Automorphism groups

Most exotic examples have nontrivial (nonhyperelliptic) automorphisms.
There are several reasons for this.

Since π0(ST(A)) is the Galois group of the endomorphism field,
automorphisms not defined over the ground field contribute directly.

Automorphisms also tend to force the Jacobian to be decomposable.
For example, these give the best examples to date of high-genus
Jacobians with many elliptic factors (Ekedahl–Serre, Paulhus).

One can twist a curve using automorphisms and then control the
resulting Sato-Tate group. This was done for the Fermat/Klein
quartics by Fité–Lorenzo Garćıa–Sutherland and for

C : y 2 = x8 − 14x4 + 1 (#Aut(C ) = 48)

by Arora–Cantoral–Landesman–Lombardo–Morrow; these give some
extensions of U(1)3 and SU(2)3, respectively.
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Fantastic curves and where to find them

Action of C2

The generic hyperelliptic and nonhyperelliptic curves of genus 3 with an
extra involution are

y 2 = P(x2), Y 4 + P2(X ,Z )Y 2 + P4(X ,Z ) = 0.

In the hyperelliptic case, the quotient is y 2 = P(x) and the Prym is the
Jacobian of y 2 = xP(x) (which is also a quotient).

In the nonhyperelliptic case, the quotient is

y 2 + P2(x , 1)y + P4(x , 1) = 0;

the Prym is identified by Ritzenthaler–Romagny using a result of Bruin
(when P4(x , 1) factors into two quadratics, else some descent is needed).

This gives many examples of split/triple products, but not U(1)× U(1)2.
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Fantastic curves and where to find them

Actions of C2 × C2

The generic nonhyperelliptic curve with an action of C2 × C2 is

aX 4 + bY 4 + cZ 4 + dX 2Y 2 + eX 2Z 2 + fY 2Z 2 = 0.

Its Jacobian is isogenous to the products of the Jacobians of the quotients
by the three involutions. We obtain several examples by forcing some of
these quotients to be Galois conjugate.

One can also work backwards. Given three elliptic curves E1,E2,E3 with
“compatible” 2-torsion, Howe–Leprévost–Poonen produce a curve of the
above form with (twists of) E1,E2,E3 as the Jacobians of the quotients.
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Fantastic curves and where to find them

Glueing elliptic curves: an example of Everett Howe

Consider the following elliptic curves over Q.

E1 : y 2 = x3 + 3x2 + 3x CM by Q(ζ3)

E2 : y 2 = x3 + x2 + 2x CM by Q(
√
−2)

E3 : y 2 = x3 − 21x CM by Q(i)

Then E1 × E2 × E3 is isogenous to a twist of the Jacobian of

3X 4 + 2Y 4 + 6Z 4 − 6X 2Y 2 + 6X 2Z 2 − 12Y 2Z 2 = 0.

This realizes a maximal extension of U(1)× U(1)× U(1) with component
group C2 × C2 × C2.

By varying the curves, we can obtain 16 examples of this type. Are these
(up to twists) the only curves over Q with this Sato-Tate group?
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Fantastic curves and where to find them

Potential examples from twisting abelian threefolds

Most of the missing examples are for extensions of U(1)3. These are all
known to occur for twists of the cube of a CM elliptic curve over Q. In
some cases, we can show that there exists an isogeny to an abelian
threefold with an indecomposable principal polarization; up to twist, this is
the Jacobian of some curve. Can one compute this curve?

For example, let E be an elliptic curve over Q with CM by Q(ζ3). Then
there exist a twist A of E 3 and a 3-isogeny A→ B such that B is
(indecomposably) principally polarized and π0(ST(A)) ∼= π0(ST(B)) is a
double cover of the Hessian group of order 216 (the symmetries of the
configuration of flexes of a plane cubic).

For this and other examples, even partial information about the shape of
the curve would be helpful for executing brute force searches.
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What about...

Thank you for your attention!
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What about...

... positive characteristic?

One can ask (and presumably answer) similar questions where K is a
function field over a finite field. However, our results are not directly
applicable, because they depend on constraints from Hodge theory which
do not apply in positive characteristic. For instance, ST(A)◦ need not be
positive-dimensional because of isotrivial abelian varieties.
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What about...

... abelian fourfolds?

There are many reasons to be wary.

The number of cases should grow into the thousands. More of the
process will need to be automated, particularly finding finite
subgroups of N(U(1)4)/U(1)4 satisfying the rationality condition.

By examples of Mumford and Shioda, the Sato-Tate group can be
smaller than what is predicted by the endomorphism algebra (and in
such cases the Mumford-Tate conjecture is also at issue).

On a related note, the real endomorphism algebra can now include H.

The rationality condition is probably too weak, due to the distinction
between fields of definition and fields of traces for linear
representations.

The analysis of CM types is more involved than before.

Kiran S. Kedlaya Sato-Tate groups of abelian threefolds CIRM, Luminy, June 11, 2019 36 / 37



What about...

... other motives?

It might be more productive to focus on other classes of motives.

For K3 surfaces, cases of high Picard number (≥ 17) are handled by the
classification for abelian surfaces. Additional cases can probably be
handled using the classification of finite subgroups of SO(n,Z); this should
be feasible (and possibly even known) with current technology.

For Calabi–Yau threefolds, with Fité and Sutherland we treated the case
where the primitive middle cohomology has Hodge numbers (1, 1, 1, 1)
(e.g., in the Dwork pencil).
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