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Arithmetic L-functions: examples

Given a smooth proper scheme X over a number field K , one can define
(incomplete) arithmetic L-functions. These are Dirichlet series defined
by products indexed by finite places of K at which X has good reduction.

Example

Take X = SpecK . Then one gets the Dedekind zeta function

ζK (s) =
∏
p

(1− Norm(p)−s)−1.

Example

Let X be an elliptic curve over K . Then one of the L-functions is

L(X , s) =
∏
p

(1− ap Norm(p)−s + Norm(p)1−2s)−1

where ap is the trace of Frobenius of Xp (the mod-p reduction of X ).
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Arithmetic L-functions: a general definition

In general, for i ∈ {0, . . . , 2 dim(X )}, one gets an L-function whose factor
at p is Li (Norm(p)−s)−1, where Li appears in the zeta function of Xp:

Z (Xp,T ) =
L1(T ) · · · L2 dim(X )−1(T )

L0(T ) · · · L2 dim(X )(T )
.

On the previous slide, for X = SpecK we took i = 0; for X an elliptic
curve we took i = 1.

These are expected to have analytic continuation/functional equation after
completing the product so that it has one factor for each finite or infinite
place of K . (Factors at infinite places involve the Gamma function.)

There is a rich theory of special values of arithmetic L-functions,
including the Dirichlet class number formula, the Birch–Swinnerton-Dyer
conjecture, and conjectures of Bloch–Kato, Deligne, Beilinson, etc.
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Arithmetic L-functions in the LMFDB

In general, a single L-function can arise in various ways. E.g., isogenous
elliptic curves, or abelian varieties, have the same L-function (and
conversely by Tate–Faltings).

There are other ways to construct arithmetic L-functions for which there is
not a distinguished “geometric origin”. For example, any weight-2 rational
eigenform for Γ0(N) has an L-function matching some elliptic curve over
Q (Eichler–Shimura), but the latter is only determined up to isogeny.

A primary goal of the L-Functions and Modular Forms Database is to
tabulate arithmetic L-functions with diverse discrete parameters (degree,
weight, Hodge numbers). This paper is part of a project to add
hypergeometric L-functions, which provide examples with assorted
parameters; see the LMFDB beta site.
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Hypergeometric data

A hypergeometric datum of degree r consists of two disjoint tuples
(α1, . . . , αr ), (β1, . . . , βr ) over Q ∩ [0, 1) which are each balanced: the
multiplicity of any reduced fraction depends only on its denominator.
Later we will consider the example

α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3).

To each such datum, we can define a family of arithmetic L-functions of
degree r over Q parametrized by z ∈ Q \ {0, 1}. The primes p of bad
reduction have the following forms.

p is wild if γ /∈ Zp for some γ ∈ α ∪ β (e.g., 2 and 3 in our example).

p is tame if it is not wild, and either z /∈ Z×
p or z − 1 /∈ Z×

p .

This L-function is associated to a specific scheme defined in terms of
(α, β), z . However, there is no distinguished choice of this scheme.
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Trace formulas

In order to add an L-function to the LMFDB, we need the first X
coefficients of the Dirichlet series, for X on the order∗ of 224. It is
sufficient to get the prime-power coefficients, as the others can be
recovered using unique factorization.

The Euler factor at a prime p can be interpreted as the reverse charpoly of
a matrix Fp. To get the desired Dirichlet coefficients, it suffices to
compute the trace of F f

p for all prime powers q = pf ≤ X . Note that for

any fixed f , we need q = pf for p ≤ X 1/f .

In similar situations, this is done by constructing Fp from a Weil
cohomology theory (étale or p-adic). In this case, we instead use a direct
trace formula based on finite hypergeometric sums (Greene, Katz,
McCarthy, Beukers–Cohen–Mellit), plus the Gross–Koblitz formula for
Gauss sums in terms of p-adic functions (Cohen–Rodriguez Villegas).

∗The precise cutoff depends on the conductor of the L-function.
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A preview of the formula

For q = pf , the trace of F f
p is given by

Hq

(
α
β

∣∣∣z) :=
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

 r∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m,

where (γ)∗m is a p-adic variant of the Pochhammer symbol
(γ)m = γ(γ + 1) · · · (γ + m − 1) defined using the Morita p-adic Gamma
function (see §2.1); [z ] is the multiplicative lift† of the reduction of z
modulo p; and ηm, ξm are discrete invariants independent of z (see §2.2).

More discussion of this formula will take place in the live session. For the
moment, note that the sum has q − 1 terms.

†Commonly called the Teichmüller lift, but I recommend phasing out this eponym.
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Amortization over primes

The trace formula is implemented in Magma and Sage. For each q its
complexity is O(q) (with small constants), so computing all Dirichlet
coefficients up to X incurs complexity O(X 2) (modulo log factors),
dominated by the case f = 1. (The remaining cases add up to O(X 3/2).)

However, the shape of the formula makes it feasible to amortize this
complexity over q, so that the complexity for each trace is polylog(X ).
We establish a partial result, restricting to f = 1 and reducing modulo p.

Theorem (Theorem 5.26 of the paper; details in §4, §5.1, §5.2)

We exhibit an algorithm to compute Hp

(
α
β

∣∣∣z) (mod p) for all primes

p ≤ X . For fixed α, β, z , the complexity is O(X ) modulo log factors.

We have implemented this in Sage/Cython (plus C code by Sutherland for
remainder forests). The change from O(X 2) to O(X ) appears clearly...
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Timings

In this example α = ( 1
4
, 1
2
, 1
2
, 3
4
), β = ( 1

3
, 1
3
, 2
3
, 2
3
), z = 1

5
. This L-function has weight 1, so

Hp

(
α
β

∣∣∣z) is uniquely determined by its reduction mod p. (See §5.4 of the paper for more

implementation details, and §5.5 for a worked example.)

X Amortized Sage Magma

210 0.07s 0.39s 0.11s

211 0.05s 0.68s 0.35s

212 0.06s 2.12s 1.29s

213 0.08s 7.39s 4.83s

214 0.12s 26.0s 18.2s

215 0.18s 92.3s 68.4s

216 0.34s 343s 280s

217 0.80s 1328s 1190s

X 218 219 220 221 222 223 224 225 226

Amortized 1.81s 4.59s 10.7s 24.6s 58.0s 135s 322s 857s 1948s

Costa, Kedlaya, Roe Hypergeometric L-functions ANTS, July 2, 2020 9 / 11



Remainder trees

The key to amortizing is to reduce to subproblems of the following form:
given a square matrix M over Z[x ] and a function k(p), compute

M(0) · · ·M(k(p)− 1) (mod p)

for all primes p in some arithmetic progression.

This can be done using remainder trees/forests, inspired by the fast
Fourier transform. For more details, see Sutherland’s talk (and §3).

We take M to be 2× 2 triangular; the diagonal entries capture factorial-like
products and the off-diagonal captures summation (see §4, §5.1, §5.2).

The mod-p restriction can probably be removed; this would simplify
computing Dirichlet coefficients up to X from O(X 2) to O(X 3/2). The
restriction to prime Frobenius traces is subtler (see §2.2.2, §6.1, §6.2).

More details about these points will be given in the live session.
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We take M to be 2× 2 triangular; the diagonal entries capture factorial-like
products and the off-diagonal captures summation (see §4, §5.1, §5.2).

The mod-p restriction can probably be removed; this would simplify
computing Dirichlet coefficients up to X from O(X 2) to O(X 3/2). The
restriction to prime Frobenius traces is subtler (see §2.2.2, §6.1, §6.2).

More details about these points will be given in the live session.
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