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Review of the prerecorded talk

Computing an arithmetic L-function

An arithmetic L-function over Q of some degree r generally has the form∏
p

det(1− p−sFp)−1

where for all but finitely many p, Fp is some r × r matrix. Rewrite

det(1− p−sFp)−1 = exp

( ∞∑
f=1

1

f
p−fs Trace(F f

p )

)
;

to compute the Dirichlet series up to X , we need Trace(F f
p ) for all prime

powers pf ≤ X .

We are interesting in computing the hypergeometric L-function associated
to a hypergeometric datum (α, β) ∈ (Q ∩ [0, 1))r×2, for which Trace(F f

p )
is computed by a finite hypergeometric sum. In this paper, we focus on
f = 1 and compute this trace modulo p.
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Review of the prerecorded talk

Finite hypergeometric sums

Using Gross–Koblitz to compute Gauss sums in the Beukers–Cohen–Mellit
formula using the Morita p-adic Gamma function Γp, we get for q = p

Trace(Fp) = Hp

(
α
β

∣∣∣z) :=
1

1− p

p−2∑
m=0

(−p)ηm(α)−ηm(β)pD+ξm(β)

 r∏
j=1

Γp(αj + m
1−p )/Γp(αj)

Γp(βj + m
1−p )/Γp(βj)

 [z ]m

where ηm, ξm,D are some combinatorial invariants of α, β and [z ] ∈ Z×p is
the unique (p − 1)-st root of unity congruent to z modulo p. (We rig up
D to ensure ηm(α)− ηm(β) + D + ξm(β) ≥ 0; since Γp takes values in Z×p ,
everything in sight is in Zp rather than Qp.)
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Review of the prerecorded talk

Quadratic versus linear complexity

The implementations in Magma and Sage compute Hp

(
α
β

∣∣∣z) one p at a

time. Since the sum is over O(p) terms, computing all prime Dirichlet

coefficients up to X requires O( X 2

logX ) arithmetic operations.

In our paper, we use the method of remainder forests (cf. Sutherland’s
paper) to amortize the computation over all p ≤ X . This reduces the
complexity to O(X log3 X ) (for fixed α, β).

Reminder: we are only computing Hp

(
α
β

∣∣∣z) (mod p). However, we expect

that one can work modulo pe with similar complexity (times some power

of e). It would still remain to compute Hpf

(
α
β

∣∣∣z) for all pf ≤ X with

f ≥ 2; this requires O( X 3/2

logX ) as written, but other techniques can reduce

this to O(X log? X ) even without amortization.
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Review of the prerecorded talk

Timings

In this example α = ( 1
4
, 1
2
, 1
2
, 3
4
), β = ( 1

3
, 1
3
, 2
3
, 2
3
), z = 1

5
. This L-function has weight 1, so

Hp

(
α
β

∣∣∣z) is uniquely determined by its reduction mod p. (See §5.4 of the paper for more

implementation details, and §5.5 for a worked example.)

X Amortized Sage Magma

210 0.07s 0.39s 0.11s

211 0.05s 0.68s 0.35s

212 0.06s 2.12s 1.29s

213 0.08s 7.39s 4.83s

214 0.12s 26.0s 18.2s

215 0.18s 92.3s 68.4s

216 0.34s 343s 280s

217 0.80s 1328s 1190s

X 218 219 220 221 222 223 224 225 226

Amortized 1.81s 4.59s 10.7s 24.6s 58.0s 135s 322s 857s 1948s
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Overview of the algorithm

Setup

Modulo p, the trace formula becomes

Hp

(
α
β

∣∣∣z) ≡ p−2∑
m=0

±p∗
 r∏

j=1

Γp(αj + m)/Γp(αj)

Γp(βj + m)/Γp(βj)

 zm (mod p).

Call the m-th summand Pm. Suppose we had f (m), g(m) ∈ Z[m] so that

Pm+1 ≡
f (m)

g(m)
Pm (mod p).

We could then set

B(m) :=

(
g(m) 0
g(m) f (m)

)
= g(m)

(
1 0
1 f (m)/g(m)

)
and then use remainder products to compute

B(0) . . .B(p − 2) ≡ g(0) · · · g(p − 2)

(
1 0∑p−2

m=0 Pm Pp−1

)
(mod p).
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Overview of the algorithm

Two related issues

The factor ±p∗ is determined by the zigzag function∗ at m
p−1 :

Zα,β : [0, 1]→ Z, Zα,β(x) := #{j : αj ≤ x} −#{j : βj ≤ x}.

This creates a “discontinuity” when m
p−1 passes through αj or βj .

Figure: Zα,β(x) for α = ( 1
4 ,

1
2 ,

1
2 ,

3
4 ), β = ( 1

3 ,
1
3 ,

2
3 ,

2
3 )

Similar “discontinuities” arise from the functional equation for Γp:

Γp(x + 1) =

{
−xΓp(x) x /∈ pZp

−Γp(x) x ∈ pZp

∗Zα,β also determines the weight and Hodge numbers of the L-function.
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Overview of the algorithm

Resolution of the issues

We resolve both issues by “ferrying”.†

We break the summation at bαj(p − 1)c, bβj(p − 1)c, and separate
primes into classes modulo lcd(α, β).

Within each range and congruence class, we do a single amortized
computation of matrix products.

We then do non-amortized computations of transition matrices to
“portage” or “ferry” across the breaks.

For each p, we put the ranges and transitions together to obtain a product

computing a scalar multiple of

(
1 0∑p−2

m=0 Pm Pp−1

)
(mod p).

†At ANTS-XIII in Madison, “portage” would have been a better metaphor.
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A worked example
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A worked example

Setup

Take α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3), z = 1

5 . We see that the L-function
has weight 1 by plotting the zigzag function (again):

In particular, computing Hp modulo p is enough to determine it exactly.
Denote the intervals we see by I0, . . . , I5.

Since we are only working modulo p, the only intervals that contribute to
the sum are I2 = (13 ,

1
2) and I4 = (23 ,

3
4). However, we do still have to

compute over the other integrals in order to update the product!

Costa, Kedlaya, Roe Hypergeometric L-functions (live) ANTS, July 2, 2020 12 / 18



A worked example

Setup

Take α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3), z = 1

5 . We see that the L-function
has weight 1 by plotting the zigzag function (again):

In particular, computing Hp modulo p is enough to determine it exactly.
Denote the intervals we see by I0, . . . , I5.

Since we are only working modulo p, the only intervals that contribute to
the sum are I2 = (13 ,

1
2) and I4 = (23 ,

3
4). However, we do still have to

compute over the other integrals in order to update the product!

Costa, Kedlaya, Roe Hypergeometric L-functions (live) ANTS, July 2, 2020 12 / 18



A worked example

Setup

Take α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3), z = 1

5 . We see that the L-function
has weight 1 by plotting the zigzag function (again):

In particular, computing Hp modulo p is enough to determine it exactly.
Denote the intervals we see by I0, . . . , I5.

Since we are only working modulo p, the only intervals that contribute to
the sum are I2 = (13 ,

1
2) and I4 = (23 ,

3
4). However, we do still have to

compute over the other integrals in order to update the product!

Costa, Kedlaya, Roe Hypergeometric L-functions (live) ANTS, July 2, 2020 12 / 18



A worked example

Amortized products

For simplicity, we focus on the case p ≡ 7 (mod 12). In the intervals that
contribute to the sum, we take in the matrix product

f2,7(k) = 5184k4 + 8640k3 + 4428k2 + 852k + 55,

g2,7(k) = 25920k4 + 69120k3 + 63360k2 + 23040k + 2880,

f4,7(k) = 5184k4 + 12096k3 + 9612k2 + 2820k + 175,

g4,7(k) = 25920k4 + 86400k3 + 106560k2 + 57600k + 11520.

Suppose we did the remainder forest and then took p = 67. We’d see

S2(67) =

(
65 0
34 5

)
, S4(67) =

(
54 0
25 41

)
.
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A worked example

More amortized products and the portage

In order to compute the correct sum, we also do similar computations over
the other intervals. At p = 67, we get

S0(67) =

(
38 0
0 62

)
, S1(67) =

(
50 0
0 47

)
,

S3(67) =

(
1 0
0 16

)
, S5(67) =

(
1 0
0 38

)
.

For the “ferries”, we work directly with p = 67 to compute

T0(67) =

(
1 0
0 6

)
, T1(67) =

(
1 0
0 31

)
, T2(67) =

(
1 0
−1 12

)
,

T3(67) =

(
1 0
−1 40

)
, T4(67) =

(
1 0
−1 40

)
, T5(67) =

(
1 0
−1 31

)
.
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A worked example

A worked example (part 4)

Putting the product together, we get

S(67) = T0(67)S0(67) · · ·T5(67)S5(67) =

(
21 0
33 21

)
so H67

(
α
β

∣∣∣15
)
≡ 33

21 ≡ 59 (mod 67). This checks with Magma and Sage:

H := HypergeometricData([[1/4,1/2,1/2,3/4],[1/3,1/3,2/3,2/3]]);

HypergeometricTrace(H, 5, 67);

-8

sage: from sage.modular.hypergeometric_motive \

....: import HypergeometricData as Hyp

sage: H = Hyp(alpha_beta=([1/4,1/2,1/2,3/4],[1/3,1/3,2/3,2/3]))

sage: H.trace(67, 1, 1/5)

-8
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Future directions

Raising the modulus

There are two main issues with working modulo a higher power of p.

The general formula has [z ] (the (p − 1)-st root of unity congruent to
z modulo p) instead of z . One can compute [z ] modulo pe (e.g., by a
Newton-Raphson iteration) but this does not integrate well into the
amortization.

The general formula has Γp(αj + m
1−p ) rather than Γp(αj + m). One

can compute Γp using its Mahler expansion in a residue disc, but it
takes O(p) complexity to compute the coefficients (e.g., modulo p2

one needs (p − 1)! (mod p2) as in a search for Wilson primes).

To deal with the first issue, one can use Harvey’s “generic prime” strategy:
replace Z[m] with Z[m, x ]/(xe) where x is a proxy for [z ]− z .

To deal with the second issue, we replace p by a second nilpotent variable
y , and integrate Mahler coefficients into the amortized computation.

We have not tried this! But it should work well in practice for small e.
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Future directions

Prime-power traces

We also need a plan for dealing with the pf -Frobenius traces for f > 1.

For Dirichlet coefficients up to X , there are O( X 1/2

logX ) of these, and the

primes involved are O(X 1/2). So we don’t need to amortize if we can
reduce the individual complexity from O(pf ) to O(p).

This is achieved by algorithms that compute a suitable matrix Fp. For
example, one can compute the Frobenius structure on the hypergeometric
differential equation and specialize it suitably (as in Lauder’s deformation
method for zeta functions).
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