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Introduction and setup

The problem

Let F ′/F be a finite extension of function fields of curves over finite fields.
Let gF , gF ′ be the genera of F and F ′. Let qF , qF ′ be the cardinalities of
the base fields∗ of F ,F ′.

Let hF , hF ′ be the class numbers of F and F ′. The ratio hF ′/F := hF ′/hF
is always an integer (more on this shortly). Following Leitzel–Madan
(1976), we ask: in what cases does hF ′/F = 1?

To make this a potentially finite problem, we only specify the isomorphism
classes of F and F ′, not the inclusion (this only makes a difference when
gF ≤ 1). We also ignore the trivial cases:

F ′ ∼= F ;

gF = gF ′ = 0.

∗By “base field” I mean the integral closure of the prime subfield.
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Introduction and setup

Contrast with the number field case

In the number field setting, class number 1 is much more common,
because class groups are always “incomplete”. The product

class number× unit regulator

behaves much more predictably, and can be interpreted as the volume of a
natural compact topological group (the Arakelov class group).

For relative class number 1, one can only hope for a finiteness result for
(nontrivial) extensions which preserve the unit rank, i.e., CM fields.† For
normal CM fields, finiteness was proved by Odlyzko and the full
classification (under GRH) by Hoffman–Sircana.

By contrast, the full Picard group of a function field looks like Z× (finite)
and removing one point always takes out Z.

†A CM field is a totally imaginary quadratic extension of a totally real field.
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Introduction and setup

Constant vs. geometric extensions

We say that:

F ′/F is constant if F ′ = F · FqF ′ ;

F ′/F is purely geometric (hereafter geometric) if qF = qF ′ .

Let E be the compositum F · FqF ′ ; then E/F is constant and F ′/E is
geometric. Since the relative class number is always an integer, hF ′/F = 1
if and only if hE/F = hF ′/E = 1.

The relative class number one problem thus reduces to the constant and
geometric cases. The constant case is relatively easy, so in this talk I will
focus on the geometric case. Hereafter, unless specified assume F ′/F is
geometric and write

q := qF = qF ′ , g := gF , g ′ := gF ′ .
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Reduction to a finite computation

The Prym variety

Let C ,C ′ be the curves with function fields F ,F ′. We have an isogeny of
abelian varieties

J(C ′) ∼= J(C )× A

for some abelian variety A over Fq, called the Prym variety. We have‡

hF ′/F = #A(Fq) ∈ Z.

In particular, if #A(Fq) = 1 and F ′ ̸= F , then:

we have q ≤ 4 by the Weil bounds;

for q = 3, 4, A is isogenous to a product of the unique elliptic curve E
over Fq with #E (Fq) = 1;

for q = 2, A is isogenous to a product of simple factors classified by
Madan–Pal–Robinson in 1977.

‡This holds even if F ′/F is not geometric, and explains why hF ′/F ∈ Z as promised.
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Reduction to a finite computation

A lower bound on point counts

Let TA,qn be the trace of the qn-power Frobenius on A; then

#C (Fqn) = #C ′(Fqn) + TA,qn ≥ TA,qn .

For q = 3, 4, we have 1 = #E (Fq) = q + 1− TE ,q and so§

#C (Fq) ≥ TA,q = q dim(A) = q(g ′ − g) ≥ q(g − 1).

For q = 2, we can have TA,q = 0, so there is no useful bound on #C (F2).
But using the Madan–Pal–Robinson classification, data from LMFDB for
dim(A) ≤ 6, and a bit of linear programming, we get

1.3366TA,2 + 0.3366TA,4 + 0.1137(TA,8 − TA,2)

+ 0.0537(TA,16 − TA,4) ≥ 1.5612 dim(A) =⇒
1.3366#C (F2) + 0.3366#C (F4) + 0.1137(#C (F8)−#C (F2))

+ 0.0537(#C (F16)−#C (F4)) ≥ 1.5612(g ′ − g) ≥ 1.5612(g − 1).

§The estimate g ′ − g ≥ g − 1 follows from Riemann–Hurwitz.
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Reduction to a finite computation

Comparison with upper bounds on point counts

We now compare with effective “linear programming” upper bounds on
#C (Fqn) (Ihara, Drinfeld–Vlădut, , Oesterlé, Serre).

q = 4 : #C (Fq) ≤ 1.435g + 21.75

q = 3 : #C (Fq) ≤ 1.153g + 11.67.

For q = 2, let ai be the number of degree-i closed points on C ; then

a1 + 0.3366(2a2) + 0.1382(3a3) + 0.0537(4a4) ≤ 0.8042g + 5.619.

For each q, combining this slide with the previous one limits (g , g ′) to an
explicit finite list.

We have now reduced the relative class number one problem to a finite
computation! However, some care is required to make this tractable; the
computation is mostly finished in this paper, up to some loose ends.
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Outline of the finite computation
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Outline of the finite computation

Outline of the finite computation for g ≤ 1

Reminder: for g ≤ 1, we are only trying to identify the isomorphism
classes of C and C ′, not the map.

For each possible pair (g , g ′), enumerate candidate Weil polynomials
for C and C ′ in SageMath.¶

For each pair of Weil polynomials, if possible, use LMFDB to identify
all C and C ′ with those Weil polynomials. LMFDB contains data
about abelian varieties over finite fields (Dupuy–K–Roe–Vincent) and
Jacobians (Howe, Xarles, Dragutinović).

This only fails in two cases with q = 2, g = 1, g ′ = 6. In one of these, C ′

is ruled out by an argument of Grantham–Howe–Faber (based on Serre’s
resultant criterion). In the other, there exists a suitable C ′ which is a cyclic
5-fold étale cover of a certain genus-2 curve. Loose end: uniqueness.

¶This uses C code of mine dating back to 2008.
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This only fails in two cases with q = 2, g = 1, g ′ = 6. In one of these, C ′

is ruled out by an argument of Grantham–Howe–Faber (based on Serre’s
resultant criterion). In the other, there exists a suitable C ′ which is a cyclic
5-fold étale cover of a certain genus-2 curve. Loose end: uniqueness.

¶This uses C code of mine dating back to 2008.
Kiran S. Kedlaya (UC San Diego) Relative class number 1 for function fields Bristol, August 9, 2022 11 / 18



Outline of the finite computation

Outline of the finite computation for g ≤ 1

Reminder: for g ≤ 1, we are only trying to identify the isomorphism
classes of C and C ′, not the map.

For each possible pair (g , g ′), enumerate candidate Weil polynomials
for C and C ′ in SageMath.¶

For each pair of Weil polynomials, if possible, use LMFDB to identify
all C and C ′ with those Weil polynomials. LMFDB contains data
about abelian varieties over finite fields (Dupuy–K–Roe–Vincent) and
Jacobians (Howe, Xarles, Dragutinović).
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Outline of the finite computation

Outline of the finite computation for g > 1

For each pair (g , g ′), use Riemann–Hurwitz to compute options for
d = [F ′ : F ].

Use further constraints based on d to eliminate some triples (d , g , g ′).

For each remaining triple (d , g , g ′):

Enumerate Weil polynomials for C and C ′ using SageMath. (The
rate-limiting cases are (d , g , g ′) = (2, 8, 15), (2, 9, 17).)
Use LMFDB to identify all C with a suitable Weil polynomial. Loose
end: do this for q = 2, g = 6, 7.
For each C , use class field theory in Magma to find all cyclic
extensions F ′/F of the right degree and genus, then check the relative
class number.
If d > 2, use the Weil polynomial constraints to rule out all noncyclic
extensions. For q > 2, we only need to handle d = 3. Loose end: do
this for q = 2.
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Outline of the finite computation

Loose ends

We have completed the finite computation for q = 3, 4. For q = 2, there
are three remaining steps.

For g = 1, g ′ = 6, we must check that there is only one candidate for
C ′. This uses a technique of Howe which uses the particular shape of
the zeta function to force C ′ to admit an order-5 automorphism.

For g > 1, we have d ≤ 7 and this is sharp (!). Ruling out noncyclic
extensions requires studying the zeta functions of other quotients of
the Galois closure; similar ideas were used by Rigato to sharpen upper
bounds on the number of Fq-points on a genus-g curve.

For d = 2, we have g ≤ 7 and this is sharp (!!). For g = 6, 7 we do
not (yet!) have a table of isomorphism classes of genus-g curves over
F2, so we make a targeted enumeration over Mg to find these curves.

These three steps are elaborated in two subsequent papers “The relative...
II, III” (currently available as preprints).
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Conclusions and next steps

Summary of the results, part 1

Theorem

Assume F ′/F is constant and gF > 0. Then (qF , d , gF ) is one of

(2, 2, 1), (2, 2, 2), (2, 2, 2), (2, 2, 3), (2, 3, 1), (2, 3, 1), (3, 2, 1), (4, 2, 1)

and all options for F are known.

Theorem

Assume F ′/F is geometric, gF ≤ 1, and gF ′ > gF . Then

(qF , gF , gF ′) ∈ {(2, 0, 1), (2, 0, 2), (2, 0, 3), (2, 0, 4), (2, 1, 2), (2, 1, 3),
(2, 1, 4), (2, 1, 5), (2, 1, 6), (3, 0, 1), (3, 1, 2), (3, 1, 3), (4, 0, 1), (4, 1, 2)}

and all options for (F ,F ′) are known except when gF ′ = 6.
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Conclusions and next steps

Summary of the results, part 2

Theorem

Assume F ′/F is geometric, gF ′ > gF > 1, and qF > 2. Then

(qF , d , gF , gF ′) ∈ {(3, 2, 2, 3), (3, 2, 2, 4),
(3, 2, 3, 5), (3, 3, 2, 4), (4, 2, 2, 3), (4, 3, 2, 4)}

and all options for F ′/F are known and cyclic.

Theorem

Assume F ′/F is geometric, gF ′ > gF > 1, qF = 2, and d > 2. Then

(d , gF , gF ′) ∈ {(3, 2, 4), (3, 2, 6), (3, 3, 7), (3, 4, 10),
(4, 2, 5), (4, 2, 6)⋆, (4, 3, 9)⋆, (5, 2, 6), (6, 2, 7)⋆, (7, 2, 8)}

and all cyclic options are known (covering all cases not marked ⋆).
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Conclusions and next steps

Summary of the results, part 3

Theorem

Assume F ′/F is geometric, gF ′ > gF > 1, qF = 2, and d = 2. Then

(gF , gF ′) ∈ {(2, 3), (2, 4), (2, 5),
(3, 5), (3, 6), (4, 7), (4, 8), (5, 9), (6, 11), (7, 13)}

and all options with gF ≤ 5 are known. There are at least two examples
with gF = 6 and at least one with gF = 7.
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Conclusions and next steps

What about larger relative class numbers?

In principle, one can use similar techniques to solve the relative class
number m problem‖ for any fixed m > 1, with two caveats.

It is probably hopeless to classify abelian varieties A over F2 with
#A(F2) = m. However, it should be possible to make a direct linear
programming argument to establish a useful lower bound on some
linear combination of traces of A.

We cannot hope to exclude noncyclic extensions. One alternative
might be a good method to enumerate degree-d extensions of a fixed
function field; for d = 3, 4, 5 this should be doable∗∗ using Bhargava’s
parametrizations.

‖Again, when the base field has genus 0 or 1, one can only hope to describe the
isomorphism classes of the two fields and not the morphism.

∗∗In the number field setting, this was done by Belabas for d = 3.
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