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Overview

Normalized L-polynomials

Throughout this talk, let A be an abelian variety1 of dimension g over a
number2 field K . Its L-function (in the analytic normalization) is defined
for Re(s) > 1 as an Euler product

LA(s) =
∏
p

LA,p(q−s)−1,

where for p a prime ideal of norm q at which A has good reduction, the
normalized L-polynomial LA,p(T ) is a unitary reciprocal monic polynomial
over R of degree 2g . (I ignore what happens at bad reduction primes.)

This L-function is an example of a motivic L-function. From now on, let
us assume that such L-functions have meromorphic continuation
and functional equation as expected. (No need to assume RH unless
you want power-saving error terms later.)

1We will only consider isogeny-invariant properties of A.
2There is a similar but slightly different function field story; ask me later.
Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 4 / 16
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Overview

Distribution of normalized L-polynomials

Let USp(2g) be the unitary symplectic group. The characteristic
polynomial map defines a bijection between Conj(USp(2g)) and the set of
unitary reciprocal monic real polynomials of degree 2g .

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the LA,p(T ) are
equidistributed with respect to the image of Haar measure on some
compact subgroup ST(A) of USp(2g). (The “generic case” is
ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized L-polynomials
(e.g., the distribution of a fixed coefficient) can be computed using the
corresponding statistics on random matrices in ST(A). For examples, see

http://math.mit.edu/~drew

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 5 / 16

http://math.mit.edu/~drew


Overview

Distribution of normalized L-polynomials

Let USp(2g) be the unitary symplectic group. The characteristic
polynomial map defines a bijection between Conj(USp(2g)) and the set of
unitary reciprocal monic real polynomials of degree 2g .

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the LA,p(T ) are
equidistributed with respect to the image of Haar measure on some
compact subgroup ST(A) of USp(2g). (The “generic case” is
ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized L-polynomials
(e.g., the distribution of a fixed coefficient) can be computed using the
corresponding statistics on random matrices in ST(A). For examples, see

http://math.mit.edu/~drew

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 5 / 16

http://math.mit.edu/~drew


Overview

Distribution of normalized L-polynomials

Let USp(2g) be the unitary symplectic group. The characteristic
polynomial map defines a bijection between Conj(USp(2g)) and the set of
unitary reciprocal monic real polynomials of degree 2g .

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the LA,p(T ) are
equidistributed with respect to the image of Haar measure on some
compact subgroup ST(A) of USp(2g). (The “generic case” is
ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized L-polynomials
(e.g., the distribution of a fixed coefficient) can be computed using the
corresponding statistics on random matrices in ST(A). For examples, see

http://math.mit.edu/~drew

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 5 / 16

http://math.mit.edu/~drew


Overview

Distribution of normalized L-polynomials (contd.)

The previous theorem can be made more precise in two ways.

One can specify the group ST(A) explicitly in terms of the arithmetic
of A. We call it the Sato-Tate group of A.
Using the right definition of ST(A), one (conjecturally) gets specific
classes in Conj(G ), rather than Conj(USp(2g)), which are
equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G ) corresponding to the LA,p(T ) are equidistributed
with respect to the image of Haar measure on some compact subgroup G
of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials
(e.g., the distribution of a fixed coefficient) can be computed using the
corresponding statistics on random matrices in G . For examples, see

http://math.mit.edu/~drew
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Overview

The case of elliptic curves

For g = 1, there are exactly three possibilities for ST(A).

If A has complex multiplication defined over K , then ST(A) = SO(2).
Note that this case cannot occur if K is totally real.

If A has complex multiplication not defined over K , then ST(A) is the
normalizer of SO(2) in USp(2) = SU(2). This group has 2 connected
components; on the nonneutral component the trace is identically 0.
(The primes that land there are the supersingular primes!)

If A has no complex multiplication, then ST(A) = SU(2).

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 7 / 16
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Structure of Sato-Tate groups

The Mumford-Tate group and the Sato-Tate group

Choose3 an embedding K ↪→ C. Using any polarization on A, we may
equip V = H1(Atop

C ,Q) with a symplectic pairing.

Also, VR ∼= H1(Atop
C ,R) admits a complex structure coming from the

complex uniformization of A. In particular, it admits an action of C×.

The Mumford-Tate group of A is the minimal Q-algebraic subgroup
MT(A) of Sp(V ) whose extension to R contains the C×-action. In
particular, it is a connected reductive algebraic group.

The neutral component of ST(A) is a maximal compact subgroup of
MT(A)(C).

3This choice will drop out at the end of the construction.
Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 9 / 16
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Structure of Sato-Tate groups

Endomorphisms and the Sato-Tate group

Under favorable4 conditions, the group MT(A) can also be interpreted as
the maximal Q-algebraic subgroup of Sp(V ) which commutes with the
action of End(AK ) on V .

In these cases, we may enlarge MT(A) to an algebraic Sato-Tate group
AST(A) by considering elements which normalize End(AK ) via an element
of GK = Gal(K/K ). The full Sato-Tate group ST(A) is a maximal
compact subgroup of AST(A)C.

In particular, the component group of ST(A) is naturally identified with
Gal(L/K ) for some finite Galois extension L of K . In fact, L is the minimal
field of definition of the endomorphisms of AK .

4This includes when g ≤ 3. Otherwise, one must consider not just endomorphisms
but also absolute Hodge cycles on A.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 10 / 16
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Structure of Sato-Tate groups

Galois image and the Sato-Tate group

Pick a prime `. Under favorable5 conditions, the group AST(A)Q`
is the

Zariski closure of the image of GK acting on the `-adic Tate module of A.

In these cases, each prime ideal p of K at which A has good reduction
gives rise to a conjugacy class in ST(A) by mapping the Frobenius class in
GK to AST(A)Q`

, mapping further into AST(A)C via some embedding
Q` ↪→ C, dividing by q1/2, and semisimplifying.

Question: is there a good automorphic analogue of this construction? We
are effectively looking for the smallest subgroup of GSp(2g) from which
the given automorphic representation arises via base change.

5This includes when g ≤ 3. Otherwise, one must assume the Mumford-Tate
conjecture for A.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 11 / 16
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Classification for abelian surfaces

Endomorphism algebras and Sato-Tate groups

From now on, assume6 g = 2.

Theorem

The group ST(A) determines, and is uniquely determined by, the R-algebra
End(AK )R together with its GK -action. In particular, the connected
subgroup of ST(A) determines, and is determined by, End(AK )R.

ST(A)◦ End(AK )R How this group occurs

USp(4) R simple, no extra endomorphisms
SU(2)× SU(2) R× R simple RM or non-CM times non-CM
SO(2)× SU(2) C× R CM times non-CM
SO(2)× SO(2) C× C simple CM or CM times CM

SU(2) M2(R) simple QM or square of non-CM
SO(2) M2(C) square of CM

6The case g = 3 is in principle tractable but involves hundreds (thousands?) of cases.
Kiran S. Kedlaya (UCSD) Sato-Tate groups of abelian surfaces 13 / 16
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Classification for abelian surfaces

Component groups

Theorem

Up to conjugation in USp(4), there are 52 possible groups ST(A). Of
these, exactly 34 occur over Q; one more occurs over real quadratic fields.

ST(A)◦ Options for ST(A)/ ST(A)◦ (* = realizable over Q)

USp(4) C∗
1

SU(2)× SU(2) C∗
1,C∗

2

SO(2)× SU(2) C1,C∗
2

SO(2)× SO(2) C1,C2,C2,C∗
4,D∗

2

SU(2) C∗
1,C∗

2,C∗
3,C∗

4,C∗
6,C∗

2,D∗
2,D∗

3,D∗
4,D∗

6

SO(2)

C1,C2,C3,C4,C6,D2,D3,D4,D6,A4, S4,
C2,D∗

2,C6,C4×C∗
2,C6×C∗

2,D2×C∗
2,D∗

6,
D4×C∗

2,D6×C∗
2,A4×C∗

2,S4×C∗
2,

C∗
2,C4,C∗

6,D∗
2,D∗

4,D∗
6,D∗

3,D∗
4,D∗

6,S∗
4
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Classification for abelian surfaces

Moment sequences

Theorem

The 52 possible groups ST(A) are distinguished by the moments

E(a2
1),E(a4

1),E(a6
1),E(a8

1),E(a2),E(a2
2),E(a3

2),E(a4
2).

In practice, fewer moments are needed. For instance, the group USp(4)
has E(a4

1) = 3 and all other groups have E(a4
1) ≥ 4. This distinction can

be detected in practice using only a few hundred primes!

Especially for Jacobians of genus 2 curves, it is relatively efficient to
compute normalized L-polynomials; these can then be used to detect
ST(A) and even more refined data.
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Classification for abelian surfaces

A word on unconditional results

The classification of Sato-Tate groups for abelian surfaces is unconditional,
in part because the Mumford-Tate conjecture is known for abelian surfaces.

The equidistribution is unconditional in all cases where ST(A)◦ is a torus
(in all dimensions). This reduces to results of Hecke.

For abelian surfaces with ST(A)◦ = SU(2), SO(2)× SU(2), SU(2)× SU(2),
equidistribution has been shown by Johansson provided that K and a
certain quadratic extension are both totally real. This uses hard potential
automorphy theorems of Harris, Taylor, etc.

For abelian surfaces with ST(A) = USp(4), equidistribution is known in no
cases. One needs potential automorphy for L-functions associated to all
representations of USp(4), not just symmetric powers.
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