Sato-Tate groups of abelian surfaces

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego kedlaya@ucsd.edu http://kskedlaya.org/slides/

Curves and Automorphic Forms Arizona State University, Tempe, March 12, 2014

Fité, K, Rotger, Sutherland: Sato-Tate distributions and Galois endomorphism modules in genus 2, *Compos. Math.* **148** (2012), 1390–1442. Banaszak, K: An algebraic Sato-Tate group and Sato-Tate conjecture, arXiv:1109.4449v2 (2012); to appear in *Indiana Univ. Math. J.*

Supported by NSF (grant DMS-1101343), UCSD (Warschawski chair).

2 Structure of Sato-Tate groups

3 Classification for abelian surfaces

Contents

2 Structure of Sato-Tate groups

Classification for abelian surfaces

Normalized *L*-polynomials

Throughout this talk, let A be an abelian variety¹ of dimension g over a number² field K. Its L-function (in the analytic normalization) is defined for Re(s) > 1 as an Euler product

$$\overline{L}_{\mathcal{A}}(s) = \prod_{\mathfrak{p}} \overline{L}_{\mathcal{A},\mathfrak{p}}(q^{-s})^{-1},$$

where for \mathfrak{p} a prime ideal of norm q at which A has good reduction, the normalized L-polynomial $\overline{L}_{A,\mathfrak{p}}(T)$ is a unitary reciprocal monic polynomial over \mathbb{R} of degree 2g. (I ignore what happens at bad reduction primes.)

This *L*-function is an example of a *motivic L-function*. From now on, let us assume that such *L*-functions have meromorphic continuation and functional equation as expected. (No need to assume RH unless you want power-saving error terms later.)

¹We will only consider isogeny-invariant properties of *A*. ²There is a similar but slightly different function field story; ask me later.

Normalized *L*-polynomials

Throughout this talk, let A be an abelian variety¹ of dimension g over a number² field K. Its L-function (in the analytic normalization) is defined for Re(s) > 1 as an Euler product

$$\overline{L}_{\mathcal{A}}(s) = \prod_{\mathfrak{p}} \overline{L}_{\mathcal{A},\mathfrak{p}}(q^{-s})^{-1},$$

where for \mathfrak{p} a prime ideal of norm q at which A has good reduction, the normalized *L*-polynomial $\overline{L}_{A,\mathfrak{p}}(T)$ is a unitary reciprocal monic polynomial over \mathbb{R} of degree 2g. (I ignore what happens at bad reduction primes.)

This *L*-function is an example of a *motivic L-function*. From now on, let us assume that such *L*-functions have meromorphic continuation and functional equation as expected. (No need to assume RH unless you want power-saving error terms later.)

¹We will only consider isogeny-invariant properties of A.

²There is a similar but slightly different function field story; ask me later.

Distribution of normalized L-polynomials

Let USp(2g) be the *unitary symplectic group*. The characteristic polynomial map defines a bijection between Conj(USp(2g)) and the set of unitary reciprocal monic real polynomials of degree 2g.

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup ST(A) of USp(2g). (The "generic case" is ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized *L*-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in ST(A). For examples, see

Distribution of normalized L-polynomials

Let USp(2g) be the *unitary symplectic group*. The characteristic polynomial map defines a bijection between Conj(USp(2g)) and the set of unitary reciprocal monic real polynomials of degree 2g.

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup ST(A) of USp(2g). (The "generic case" is ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized *L*-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in ST(A). For examples, see

Distribution of normalized L-polynomials

Let USp(2g) be the *unitary symplectic group*. The characteristic polynomial map defines a bijection between Conj(USp(2g)) and the set of unitary reciprocal monic real polynomials of degree 2g.

Theorem (conditional!)

The classes in Conj(USp(2g)) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup ST(A) of USp(2g). (The "generic case" is ST(A) = USp(2g).)

Concretely, this means that limiting statistics on normalized *L*-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in ST(A). For examples, see

The previous theorem can be made more precise in two ways.

- One can specify the group ST(A) explicitly in terms of the arithmetic of A. We call it the *Sato-Tate group* of A.
- Using the right definition of ST(A), one (conjecturally) gets specific classes in Conj(G), rather than Conj(USp(2g)), which are equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup G of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in G. For examples, see

The previous theorem can be made more precise in two ways.

- One can specify the group ST(A) explicitly in terms of the arithmetic of A. We call it the *Sato-Tate group* of A.
- Using the right definition of ST(A), one (conjecturally) gets specific classes in Conj(G), rather than Conj(USp(2g)), which are equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup G of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in G. For examples, see

The previous theorem can be made more precise in two ways.

- One can specify the group ST(A) explicitly in terms of the arithmetic of A. We call it the *Sato-Tate group* of A.
- Using the right definition of ST(A), one (conjecturally) gets specific classes in Conj(G), rather than Conj(USp(2g)), which are equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup G of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in G. For examples, see

The previous theorem can be made more precise in two ways.

- One can specify the group ST(A) explicitly in terms of the arithmetic of A. We call it the *Sato-Tate group* of A.
- Using the right definition of ST(A), one (conjecturally) gets specific classes in Conj(G), rather than Conj(USp(2g)), which are equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup G of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in G. For examples, see

The previous theorem can be made more precise in two ways.

- One can specify the group ST(A) explicitly in terms of the arithmetic of A. We call it the *Sato-Tate group* of A.
- Using the right definition of ST(A), one (conjecturally) gets specific classes in Conj(G), rather than Conj(USp(2g)), which are equidistributed with respect to the image of Haar measure on ST(A).

Theorem (conditional!)

The classes in Conj(G) corresponding to the $\overline{L}_{A,p}(T)$ are equidistributed with respect to the image of Haar measure on some compact subgroup G of USp(2g).

Concretely, this means that limiting statistics on normalized L-polynomials (e.g., the distribution of a fixed coefficient) can be computed using the corresponding statistics on random matrices in G. For examples, see

For g = 1, there are exactly three possibilities for ST(A).

- If A has complex multiplication defined over K, then ST(A) = SO(2).
 Note that this case cannot occur if K is totally real.
- If A has complex multiplication not defined over K, then ST(A) is the normalizer of SO(2) in USp(2) = SU(2). This group has 2 connected components; on the nonneutral component the trace is identically 0. (The primes that land there are the supersingular primes!)
- If A has no complex multiplication, then ST(A) = SU(2).

- For g = 1, there are exactly three possibilities for ST(A).
 - If A has complex multiplication defined over K, then ST(A) = SO(2).
 Note that this case cannot occur if K is totally real.
 - If A has complex multiplication not defined over K, then ST(A) is the normalizer of SO(2) in USp(2) = SU(2). This group has 2 connected components; on the nonneutral component the trace is identically 0. (The primes that land there are the supersingular primes!)
 - If A has no complex multiplication, then ST(A) = SU(2).

- For g = 1, there are exactly three possibilities for ST(A).
 - If A has complex multiplication defined over K, then ST(A) = SO(2).
 Note that this case cannot occur if K is totally real.
 - If A has complex multiplication not defined over K, then ST(A) is the normalizer of SO(2) in USp(2) = SU(2). This group has 2 connected components; on the nonneutral component the trace is identically 0. (The primes that land there are the supersingular primes!)
 - If A has no complex multiplication, then ST(A) = SU(2).

- For g = 1, there are exactly three possibilities for ST(A).
 - If A has complex multiplication defined over K, then ST(A) = SO(2).
 Note that this case cannot occur if K is totally real.
 - If A has complex multiplication not defined over K, then ST(A) is the normalizer of SO(2) in USp(2) = SU(2). This group has 2 connected components; on the nonneutral component the trace is identically 0. (The primes that land there are the supersingular primes!)
 - If A has no complex multiplication, then ST(A) = SU(2).

Contents

Classification for abelian surfaces

Choose³ an embedding $K \hookrightarrow \mathbb{C}$. Using any polarization on A, we may equip $V = H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{Q})$ with a symplectic pairing.

Also, $V_{\mathbb{R}} \cong H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{R})$ admits a complex structure coming from the complex uniformization of A. In particular, it admits an action of \mathbb{C}^{\times} .

The *Mumford-Tate group* of A is the minimal \mathbb{Q} -algebraic subgroup MT(A) of Sp(V) whose extension to \mathbb{R} contains the \mathbb{C}^{\times} -action. In particular, it is a *connected* reductive algebraic group.

³This choice will drop out at the end of the construction.

Choose³ an embedding $K \hookrightarrow \mathbb{C}$. Using any polarization on A, we may equip $V = H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{Q})$ with a symplectic pairing.

Also, $V_{\mathbb{R}} \cong H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{R})$ admits a complex structure coming from the complex uniformization of A. In particular, it admits an action of \mathbb{C}^{\times} .

The *Mumford-Tate group* of A is the minimal \mathbb{Q} -algebraic subgroup MT(A) of Sp(V) whose extension to \mathbb{R} contains the \mathbb{C}^{\times} -action. In particular, it is a *connected* reductive algebraic group.

³This choice will drop out at the end of the construction.

Choose³ an embedding $K \hookrightarrow \mathbb{C}$. Using any polarization on A, we may equip $V = H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{Q})$ with a symplectic pairing.

Also, $V_{\mathbb{R}} \cong H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{R})$ admits a complex structure coming from the complex uniformization of A. In particular, it admits an action of \mathbb{C}^{\times} .

The *Mumford-Tate group* of A is the minimal \mathbb{Q} -algebraic subgroup MT(A) of Sp(V) whose extension to \mathbb{R} contains the \mathbb{C}^{\times} -action. In particular, it is a *connected* reductive algebraic group.

³This choice will drop out at the end of the construction.

Choose³ an embedding $K \hookrightarrow \mathbb{C}$. Using any polarization on A, we may equip $V = H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{Q})$ with a symplectic pairing.

Also, $V_{\mathbb{R}} \cong H_1(A_{\mathbb{C}}^{\text{top}}, \mathbb{R})$ admits a complex structure coming from the complex uniformization of A. In particular, it admits an action of \mathbb{C}^{\times} .

The *Mumford-Tate group* of A is the minimal \mathbb{Q} -algebraic subgroup MT(A) of Sp(V) whose extension to \mathbb{R} contains the \mathbb{C}^{\times} -action. In particular, it is a *connected* reductive algebraic group.

³This choice will drop out at the end of the construction.

Endomorphisms and the Sato-Tate group

Under favorable⁴ conditions, the group MT(A) can also be interpreted as the maximal \mathbb{Q} -algebraic subgroup of Sp(V) which commutes with the action of $End(A_{\overline{K}})$ on V.

In these cases, we may enlarge MT(A) to an algebraic Sato-Tate group AST(A) by considering elements which normalize $End(A_{\overline{K}})$ via an element of $G_K = Gal(\overline{K}/K)$. The full Sato-Tate group ST(A) is a maximal compact subgroup of AST(A)_C.

In particular, the component group of ST(A) is naturally identified with Gal(L/K) for some finite Galois extension L of K. In fact, L is the minimal field of definition of the endomorphisms of $A_{\overline{K}}$.

⁴This includes when $g \leq 3$. Otherwise, one must consider not just endomorphisms but also *absolute Hodge cycles* on *A*.

Endomorphisms and the Sato-Tate group

Under favorable⁴ conditions, the group MT(A) can also be interpreted as the maximal \mathbb{Q} -algebraic subgroup of Sp(V) which commutes with the action of $End(A_{\overline{K}})$ on V.

In these cases, we may enlarge MT(A) to an algebraic Sato-Tate group AST(A) by considering elements which normalize $End(A_{\overline{K}})$ via an element of $G_K = Gal(\overline{K}/K)$. The full Sato-Tate group ST(A) is a maximal compact subgroup of AST(A)_C.

In particular, the component group of ST(A) is naturally identified with Gal(L/K) for some finite Galois extension L of K. In fact, L is the minimal field of definition of the endomorphisms of $A_{\overline{K}}$.

⁴This includes when $g \leq 3$. Otherwise, one must consider not just endomorphisms but also *absolute Hodge cycles* on *A*.

Endomorphisms and the Sato-Tate group

Under favorable⁴ conditions, the group MT(A) can also be interpreted as the maximal \mathbb{Q} -algebraic subgroup of Sp(V) which commutes with the action of $End(A_{\overline{K}})$ on V.

In these cases, we may enlarge MT(A) to an *algebraic Sato-Tate group* AST(A) by considering elements which normalize $End(A_{\overline{K}})$ via an element of $G_K = Gal(\overline{K}/K)$. The full Sato-Tate group ST(A) is a maximal compact subgroup of AST(A)_C.

In particular, the component group of ST(A) is naturally identified with Gal(L/K) for some finite Galois extension L of K. In fact, L is the minimal field of definition of the endomorphisms of $A_{\overline{K}}$.

⁴This includes when $g \leq 3$. Otherwise, one must consider not just endomorphisms but also *absolute Hodge cycles* on *A*.

Galois image and the Sato-Tate group

Pick a prime ℓ . Under favorable⁵ conditions, the group $AST(A)_{\mathbb{Q}_{\ell}}$ is the Zariski closure of the image of G_{K} acting on the ℓ -adic Tate module of A.

In these cases, each prime ideal \mathfrak{p} of K at which A has good reduction gives rise to a conjugacy class in ST(A) by mapping the Frobenius class in G_K to $AST(A)_{\mathbb{Q}_\ell}$, mapping further into $AST(A)_{\mathbb{C}}$ via some embedding $\mathbb{Q}_\ell \hookrightarrow \mathbb{C}$, dividing by $q^{1/2}$, and semisimplifying.

Question: is there a good automorphic analogue of this construction? We are effectively looking for the smallest subgroup of GSp(2g) from which the given automorphic representation arises via base change.

⁵This includes when $g \leq 3$. Otherwise, one must assume the *Mumford-Tate* conjecture for *A*.

Galois image and the Sato-Tate group

Pick a prime ℓ . Under favorable⁵ conditions, the group $AST(A)_{\mathbb{Q}_{\ell}}$ is the Zariski closure of the image of G_{K} acting on the ℓ -adic Tate module of A.

In these cases, each prime ideal \mathfrak{p} of K at which A has good reduction gives rise to a conjugacy class in ST(A) by mapping the Frobenius class in G_K to $AST(A)_{\mathbb{Q}_\ell}$, mapping further into $AST(A)_{\mathbb{C}}$ via some embedding $\mathbb{Q}_\ell \hookrightarrow \mathbb{C}$, dividing by $q^{1/2}$, and semisimplifying.

Question: is there a good automorphic analogue of this construction? We are effectively looking for the smallest subgroup of GSp(2g) from which the given automorphic representation arises via base change.

⁵This includes when $g \leq 3$. Otherwise, one must assume the *Mumford-Tate* conjecture for *A*.

Galois image and the Sato-Tate group

Pick a prime ℓ . Under favorable⁵ conditions, the group $AST(A)_{\mathbb{Q}_{\ell}}$ is the Zariski closure of the image of G_{K} acting on the ℓ -adic Tate module of A.

In these cases, each prime ideal \mathfrak{p} of K at which A has good reduction gives rise to a conjugacy class in ST(A) by mapping the Frobenius class in G_K to $AST(A)_{\mathbb{Q}_\ell}$, mapping further into $AST(A)_{\mathbb{C}}$ via some embedding $\mathbb{Q}_\ell \hookrightarrow \mathbb{C}$, dividing by $q^{1/2}$, and semisimplifying.

Question: is there a good automorphic analogue of this construction? We are effectively looking for the smallest subgroup of GSp(2g) from which the given automorphic representation arises via base change.

⁵This includes when $g \leq 3$. Otherwise, one must assume the *Mumford-Tate* conjecture for *A*.

Contents

Classification for abelian surfaces

Endomorphism algebras and Sato-Tate groups

From now on, assume⁶ g = 2.

Theorem

The group ST(A) determines, and is uniquely determined by, the \mathbb{R} -algebra $End(A_{\overline{K}})_{\mathbb{R}}$ together with its G_{K} -action. In particular, the connected subgroup of ST(A) determines, and is determined by, $End(A_{\overline{K}})_{\mathbb{R}}$.

ST(A)°	$\operatorname{End}(A_{\overline{K}})_{\mathbb{R}}$	How this group occurs
USp(4)	\mathbb{R}	simple, no extra endomorphisms
$SU(2) \times SU(2)$	$\mathbb{R} imes \mathbb{R}$	simple RM or non-CM times non-CM
$SO(2) \times SU(2)$	$\mathbb{C} imes \mathbb{R}$	CM times non-CM
$SO(2) \times SO(2)$	$\mathbb{C} imes \mathbb{C}$	simple CM or CM times CM
SU(2)	$M_2(\mathbb{R})$	simple QM <i>or</i> square of non-CM
SO(2)	$M_2(\mathbb{C})$	square of CM

⁶The case g = 3 is in principle tractable but involves hundreds (thousands?) of cases.

Kiran S. Kedlaya (UCSD)

Endomorphism algebras and Sato-Tate groups

From now on, assume⁶ g = 2.

Theorem

The group ST(A) determines, and is uniquely determined by, the \mathbb{R} -algebra $End(A_{\overline{K}})_{\mathbb{R}}$ together with its G_{K} -action. In particular, the connected subgroup of ST(A) determines, and is determined by, $End(A_{\overline{K}})_{\mathbb{R}}$.

$ST(A)^{\circ}$	$\operatorname{End}(A_{\overline{K}})_{\mathbb{R}}$	How this group occurs
USp(4)	\mathbb{R}	simple, no extra endomorphisms
$SU(2) \times SU(2)$	$\mathbb{R} imes \mathbb{R}$	simple RM or non-CM times non-CM
$SO(2) \times SU(2)$	$\mathbb{C} imes \mathbb{R}$	CM times non-CM
$SO(2) \times SO(2)$	$\mathbb{C} imes \mathbb{C}$	simple CM or CM times CM
SU(2)	$M_2(\mathbb{R})$	simple QM or square of non-CM
SO(2)	$M_2(\mathbb{C})$	square of CM

⁶The case g = 3 is in principle tractable but involves hundreds (thousands?) of cases.

Kiran S. Kedlaya (UCSD)

Endomorphism algebras and Sato-Tate groups

From now on, assume⁶ g = 2.

Theorem

The group ST(A) determines, and is uniquely determined by, the \mathbb{R} -algebra $End(A_{\overline{K}})_{\mathbb{R}}$ together with its G_{K} -action. In particular, the connected subgroup of ST(A) determines, and is determined by, $End(A_{\overline{K}})_{\mathbb{R}}$.

$ST(A)^\circ$	$End(A_{\overline{K}})_{\mathbb{R}}$	How this group occurs
USp(4)	\mathbb{R}	simple, no extra endomorphisms
$SU(2) \times SU(2)$	$\mathbb{R} imes \mathbb{R}$	simple RM <i>or</i> non-CM times non-CM
$SO(2) \times SU(2)$	$\mathbb{C} imes \mathbb{R}$	CM times non-CM
$SO(2) \times SO(2)$	$\mathbb{C} imes \mathbb{C}$	simple CM or CM times CM
SU(2)	$M_2(\mathbb{R})$	simple QM <i>or</i> square of non-CM
SO(2)	$M_2(\mathbb{C})$	square of CM

⁶The case g = 3 is in principle tractable but involves hundreds (thousands?) of cases.

Kiran S. Kedlaya (UCSD)

Component groups

Theorem

Up to conjugation in USp(4), there are 52 possible groups ST(A). Of these, exactly 34 occur over \mathbb{Q} ; one more occurs over real quadratic fields.

$ST(A)^{\circ}$	Options for $ST(A)/ST(A)^{\circ}$ (* = realizable over \mathbb{Q})
USp(4)	C_1^*
$SU(2) \times SU(2)$	C_{1}^{*}, C_{2}^{*}
$SO(2) \times SU(2)$	C_1, C_2^*
$SO(2) \times SO(2)$	$C_1, C_2, C_2, C_4^*, D_2^*$
SU(2)	C ₁ [*] , C ₂ [*] , C ₃ [*] , C ₄ [*] , C ₆ [*] , C ₂ [*] , D ₂ [*] , D ₃ [*] , D ₄ [*] , D ₆ [*]
	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4,$
SO(2)	$C_2, D_2^*, C_6, C_4 \times C_2^*, C_6 \times C_2^*, D_2 \times C_2^*, D_6^*,$
50(2)	$D_4 imesC_2^*,D_6 imesC_2^*,A_4 imesC_2^*,S_4 imesC_2^*,$
	$C_2^*, C_4, C_6^*, D_2^*, D_4^*, D_6^*, D_3^*, D_4^*, D_6^*, S_4^*$

Component groups

Theorem

Up to conjugation in USp(4), there are 52 possible groups ST(A). Of these, exactly 34 occur over \mathbb{Q} ; one more occurs over real quadratic fields.

$ST(A)^{\circ}$	Options for $ST(A)/ST(A)^{\circ}$ (* = realizable over \mathbb{Q})
USp(4)	C_1^*
$SU(2) \times SU(2)$	C_{1}^{*}, C_{2}^{*}
$SO(2) \times SU(2)$	C_1, C_2^*
$SO(2) \times SO(2)$	$C_1, C_2, C_2, C_4^*, D_2^*$
SU(2)	$C_1^*, C_2^*, C_3^*, C_4^*, C_6^*, C_2^*, D_2^*, D_3^*, D_4^*, D_6^*$
	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, A_4, S_4,$
SO(2)	$C_2, D_2^*, C_6, C_4 \times C_2^*, C_6 \times C_2^*, D_2 \times C_2^*, D_6^*,$
	$D_4 imesC_2^*,D_6 imesC_2^*,A_4 imesC_2^*,S_4 imesC_2^*,$,
	$C_2^*, C_4, C_6^*, D_2^*, D_4^*, D_6^*, D_3^*, D_4^*, D_6^*, S_4^*$

Moment sequences

Theorem

The 52 possible groups ST(A) are distinguished by the moments

 $\mathbb{E}(a_1^2), \mathbb{E}(a_1^4), \mathbb{E}(a_1^6), \mathbb{E}(a_1^8), \mathbb{E}(a_2), \mathbb{E}(a_2^2), \mathbb{E}(a_2^3), \mathbb{E}(a_2^4).$

In practice, fewer moments are needed. For instance, the group USp(4) has $\mathbb{E}(a_1^4) = 3$ and all other groups have $\mathbb{E}(a_1^4) \ge 4$. This distinction can be detected in practice using only a few hundred primes!

Especially for Jacobians of genus 2 curves, it is relatively efficient to compute normalized *L*-polynomials; these can then be used to detect ST(A) and even more refined data.

Moment sequences

Theorem

The 52 possible groups ST(A) are distinguished by the moments

 $\mathbb{E}(a_1^2), \mathbb{E}(a_1^4), \mathbb{E}(a_1^6), \mathbb{E}(a_1^8), \mathbb{E}(a_2), \mathbb{E}(a_2^2), \mathbb{E}(a_2^3), \mathbb{E}(a_2^4).$

In practice, fewer moments are needed. For instance, the group USp(4) has $\mathbb{E}(a_1^4) = 3$ and all other groups have $\mathbb{E}(a_1^4) \ge 4$. This distinction can be detected in practice using only a few hundred primes!

Especially for Jacobians of genus 2 curves, it is relatively efficient to compute normalized *L*-polynomials; these can then be used to detect ST(A) and even more refined data.

The classification of Sato-Tate groups for abelian surfaces is unconditional, in part because the Mumford-Tate conjecture is known for abelian surfaces.

The equidistribution is unconditional in all cases where $ST(A)^{\circ}$ is a torus (in all dimensions). This reduces to results of Hecke.

For abelian surfaces with $ST(A)^{\circ} = SU(2), SO(2) \times SU(2), SU(2) \times SU(2)$, equidistribution has been shown by Johansson provided that K and a certain quadratic extension are both totally real. This uses hard potential automorphy theorems of Harris, Taylor, etc.

The classification of Sato-Tate groups for abelian surfaces is unconditional, in part because the Mumford-Tate conjecture is known for abelian surfaces.

The equidistribution is unconditional in all cases where $ST(A)^{\circ}$ is a torus (in all dimensions). This reduces to results of Hecke.

For abelian surfaces with $ST(A)^{\circ} = SU(2), SO(2) \times SU(2), SU(2) \times SU(2)$, equidistribution has been shown by Johansson provided that K and a certain quadratic extension are both totally real. This uses hard potential automorphy theorems of Harris, Taylor, etc.

The classification of Sato-Tate groups for abelian surfaces is unconditional, in part because the Mumford-Tate conjecture is known for abelian surfaces.

The equidistribution is unconditional in all cases where $ST(A)^{\circ}$ is a torus (in all dimensions). This reduces to results of Hecke.

For abelian surfaces with $ST(A)^{\circ} = SU(2), SO(2) \times SU(2), SU(2) \times SU(2)$, equidistribution has been shown by Johansson provided that K and a certain quadratic extension are both totally real. This uses hard potential automorphy theorems of Harris, Taylor, etc.

The classification of Sato-Tate groups for abelian surfaces is unconditional, in part because the Mumford-Tate conjecture is known for abelian surfaces.

The equidistribution is unconditional in all cases where $ST(A)^{\circ}$ is a torus (in all dimensions). This reduces to results of Hecke.

For abelian surfaces with $ST(A)^{\circ} = SU(2), SO(2) \times SU(2), SU(2) \times SU(2),$ equidistribution has been shown by Johansson provided that K and a certain quadratic extension are both totally real. This uses hard potential automorphy theorems of Harris, Taylor, etc.