An overview of the *p*-adic local Langlands correspondence (after Colmez)

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego kedlaya@ucsd.edu http://kskedlaya.org/slides/

Online Conference in Automorphic Forms virtual conference sponsored by the Rényi Institute June 1, 2020

Kedlaya was supported by NSF (grant DMS-1802161) and UC San Diego (Warschawski Professorship).

The global Langlands correspondence

Let F be a global field (a number field or a finite extension of $\mathbb{F}_p(t)$ for some prime p). Fix a prime number ℓ which is nonzero in F.

The global Langlands correspondence for the group GL_n is supposed to relate continuous representations of the absolute Galois group G_F on *n*-dimensional $\overline{\mathbb{Q}}_{\ell}$ -vector spaces (unramified away from finitely many places of F) with automorphic representations of the adelic group $\operatorname{GL}_n(\mathbb{A}_F)$. Under this correspondence, the spectrum of Frobenius at a place v of F on the Galois side is supposed to match the spectrum of the Hecke operator at v on the automorphic side.

The case n = 1 reproduces class field theory.

The local Langlands correspondence $(\ell \neq p)$

Let F be a local field (a complete discretely valued field with finite residue field). Fix a prime number ℓ which is nonzero in the residue field of F.

The local Langlands correspondence for the group GL_n relates continuous representations of G_F on *n*-dimensional $\overline{\mathbb{Q}}_\ell$ -vector spaces (with no condition on ramification) with representations of the adelic group $\operatorname{GL}_n(\mathbb{A}_F)$.

There is supposed to be **local-global compatibility** of the Langlands correspondence: for F a global field and v a place of F, restricting from G_F to G_{F_v} on the Galois side is supposed to correspond to restricting from \mathbb{A}_F to its factor F_v .

```
Again, the case n = 1 reproduces class field theory.
```

The local Langlands correspondence $(\ell = p)$

Let F be a local field of residue characteristic p.

One can ask whether there is a meaningful version of the local Langlands correspondence in this setting which exhibits local-global compatibility. Because there are "many" continuous representations of G_F on finite-dimensional $\overline{\mathbb{Q}}_p$ -vector spaces, one must rigidify this question by asking for compatibility with p-adic analytic interpolation.

One would also like some sort of compatibility with reduction modulo p.

A miracle happens for the group GL_2 over \mathbb{Q}_p : Colmez has constructed a correspondence that does everything one would want. (The existence of same had been conjectured by Breuil.)

This uses Fontaine's theory of (φ, Γ) -modules, which gives a convenient alternate description of the category of continuous representations of $G_{\mathbb{Q}_p}$ on finite-dimensional \mathbb{Q}_p -vector spaces. More on this description shortly.

Reading off the Langlands correspondence from a (φ, Γ) -module is in the same spirit as other constructions in *p*-adic Hodge theory; for example, given the *p*-adic étale cohomology of $X_{\overline{\mathbb{Q}_p}}$ for some smooth proper scheme X over \mathbb{Z}_p , one can read off the comparison isomorphism with crystalline cohomology (Berger).

What is a (φ, Γ) -module? (version 1)

Let A be the *p*-adic completion of $\mathbb{Z}_p((\pi))$. This ring admits an endomorphism φ , and automorphisms indexed by $\gamma \in \Gamma = \mathbb{Z}_p^{\times}$, characterized by

$$\varphi(1+\pi) = (1+\pi)^p, \gamma(1+\pi) = (1+\pi)^{\gamma} = \sum_{n=0}^{\infty} \frac{\gamma(\gamma-1)\cdots(\gamma-n+1)}{n!} \pi^n$$

plus continuity for the inverse limit topology given by putting the π -adic topology on $\mathbb{Z}/p^n\mathbb{Z}((\pi))$.

A (projective, étale) (φ, Γ) -module over A is a finite free A-module M equipped with commuting semilinear continuous actions of φ and Γ , for which the induced map $\varphi^*M \to M$ is an isomorphism.

What is a (φ, Γ) -module? (version 1)

A (projective, étale) (φ, Γ) -module over A is a finite free A-module M equipped with commuting semilinear actions of φ and Γ , for which the induced map $\varphi^*M \to M$ is an isomorphism.

Theorem (Fontaine)

There is an explicit equivalence of categories between the category of (φ, Γ) -modules over **A** and the category of continuous representations of $G_{\mathbb{Q}_p}$ on finite free \mathbb{Z}_p -modules.

What is a (φ, Γ) -module? (version 2)

Let \mathbf{A}^{\dagger} be the subring of \mathbf{A} consisting of series which converge in some region of the form $* < |\pi| < 1$ (such series are said to be **overconvergent**); this subring is stable under φ and Γ . Define a (φ, Γ) -module over \mathbf{A}^{\dagger} using the same recipe as over \mathbf{A} .

Theorem (Cherbonnier-Colmez)

The categories of (φ, Γ) -modules over \mathbf{A}^{\dagger} and \mathbf{A} are equivalent via base extension. In particular, by Fontaine they are both equivalent to the category of continuous representations of $G_{\mathbb{Q}_p}$ on finite free \mathbb{Z}_p -modules.

A monoid algebra reinterpreted (part 2)

It is natural to view φ and Γ together as forming a single commutative monoid isomorphism to $\mathbb{Z}_p \setminus \{0\}$, acting on \mathbf{A} and \mathbf{A}^{\dagger} as

$$x(1+\pi) = (1+\pi)^x.$$

Consequently, any (φ, Γ) -module may be viewed as a left module for the twisted monoid algebra $\mathbf{A}\langle \mathbb{Z}_p \setminus \{0\}\rangle$.

Thanks to the continuity condition, we can extend the action of $\mathbf{A}\langle \mathbb{Z}_p \setminus \{0\}\rangle$ to a larger ring.* Namely, identify the Iwasawa algebra $\mathbb{Z}_p[\![1 + p\mathbb{Z}_p]\!]$ with $\mathbb{Z}_p[\![T]\!]$. We then define a ring structure on $\mathbb{Z}_p[\![\pi, T]\!]$ so

$$(1+T)^{-1}(1+\pi)(1+T) = (1+\pi)^{1+p},$$

invert $\pi,$ impose the $\pi\text{-adic}$ topology modulo each power of p, and take the inverse limit.

^{*}For convenience, assume p > 2.

A monoid algebra reinterpreted (part 2)

The same ring can be desired from the untwisted monoid algebra over \mathbb{Z}_p for the monoid

by identifying
$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
 with $(1+\pi)^x$.

Automorphic representations from (φ, Γ) -modules

As noted above, from a $(\varphi,\Gamma)\text{-module }M$ we obtain an action of the monoid

$$\begin{pmatrix} \mathbb{Z}_p \setminus \{0\} & \mathbb{Z}_p \\ 0 & 1 \end{pmatrix}.$$

Let $\psi: M \to M$ be the reduced trace[†] of φ . By replacing M with $\lim_{\psi \to 0} M$, we obtain an object with an action of the group

$$\begin{pmatrix} \mathbb{Q}_p^{\times} & \mathbb{Q}_p \\ 0 & 1 \end{pmatrix}.$$

By a suitable induction from this subgroup (the *mirabolic*) to $GL_2(\mathbb{Q}_p)$, we obtain Colmez's candidate for the Galois-to-automorphic construction. (One checks that this works by looking carefully at certain specializations.)

[†]This map *a priori* is valued in M[1/p], but it does in fact land in M.

Overconvergent descent and locally analytic vectors

As noted earlier, a (φ, Γ) -module over **A** descends canonically to the subring \mathbf{A}^{\dagger} . By tracing this descent through Colmez's construction, we obtain a subrepresentation of $\operatorname{GL}_2(\mathbb{Q}_p)$.

This turns out to be the **locally analytic** vectors in the original representation. The key point is that \mathbf{A}^{\dagger} , while dense in \mathbf{A} for the inverse limit topology, admits an alternate topology under which \mathbf{A}^{\dagger} is complete **and** the action of Γ remains continuous.

So far so good, but how do we go past $\operatorname{GL}_2(\mathbb{Q}_p)$?

If F is a finite extension of \mathbb{Q}_p , we can exhibit a similar theory of (φ, Γ) -modules associated to representations of G_F . However, this fails to reproduce the previous success for two reasons.

- The base ring will be a finite étale algebra over the previous one. In particular, it will still correspond to completing a group algebra for a commutative *p*-adic Lie group of rank 1 over \mathbb{Q}_p (not *F*).
- The group Γ will be replaced by a subgroup of finite index. In particular, it will remain a p-adic Lie group of rank 1 over Q_p (not F).

Similar issues arise if we try to replace GL_2 with a group of higher rank, such as GL_n .

In order to go further, we need additional constructions of **multivariate** (φ,Γ) -modules associated to Galois representations.

In order to follow recent developments in the Langlands correspondence (especially the work of V. Lafforgue), one must also find ways to characterize representations of **products** of Galois groups.

Ingredients

The action of Γ in the usual theory of (φ, Γ) -modules is derived from the action of \mathbb{Z}_p^{\times} on $\mathbb{Q}_p(\mu_{p^{\infty}})$. One can construct a parallel theory for any infinitely ramified *p*-adic Lie extension of any finite extension of \mathbb{Q}_p except that this happens in the language of perfectoid rings, which does not provide access to locally analytic vectors.

To do that, one must establish variants of the Cherbonnier-Colmez overconvergent descent. Recent progress has been made on this by H. Gao and T. Liu.

It seems easier to extend overconvergent descent to products; this takes advantage of a construction of Drinfeld. (Joint work with Carter and Zábrádi.)

For more information...

- KSK, Frobenius modules over multivariate Robba rings (arXiv:1311.7468v2).
- A. Carter, KSK, and G. Zábrádi, Drinfeld's lemma for perfectoid spaces and overconvergence of multivariate (φ, Γ) -modules (arXiv:1808.03964v2).

To be continued next summer in Budapest!