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Zeta functions in algebraic geometry

Zeta functions of algebraic varieties

Let Fq denote a finite field∗ of order q = pa. For X an algebraic variety
over Fq, the zeta function of X is

Z (X ,T ) =
∏
x∈X◦

(1− T deg(x/Fq))−1 = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

where X ◦ denotes the closed points of X (i.e., Galois orbits of Fq-points).

For X = An
Fq

(affine space), Z (X ,T ) = 1
1−qnT .

For X = V tW (disjoint union), Z (X ,T ) = Z (V ,T )Z (W ,T ).

For X = Pn
Fq

(projective space), Z (X ,T ) = 1
(1−T )(1−qT )···(1−qnT ) .

For X an elliptic curve, Z (X ,T ) = 1−aT+qT 2

(1−T )(1−qT ) with

a ∈ Z ∩ [−2
√
q, 2
√
q] (Hasse).

∗Feel free to assume q = p if you like.
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Zeta functions in algebraic geometry

Smoothness and irreduciblity

In order to be more precise about the properties of Z (X ,T ), we impose
some additional restrictions on X hereafter.

X must be smooth: it can be described as an intersection of
hypersurfaces in an affine space whose gradients are linearly
independent.

X must be geometrically irreducible: it cannot be written as the
union of two closed subvarieties, and likewise after enlarging Fq.

This includes all of the examples mentioned so far.
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Zeta functions in algebraic geometry

The Weil conjectures

Based on key examples (e.g., Fermat hypersurfaces) and an analogy with
Riemann/Dedekind zeta functions in number theory, Weil conjectured:

Z (X ,T ) is always a rational function;

if X is projective† over Fq, Z (X ,T ) factors as

P1(T ) . . .P2 dim(X )−1(T )

P0(T ) · · ·P2 dim(X )(T )

where Pi (T ) ∈ 1 + TZ[T ] has roots in C on the circle |T | = q−i/2;

if in addition X admits a smooth lift to characteristic 0, then deg(Pi )
equals the i-th Betti number of any lift.

These results were first proved using étale cohomology, in a series of works
culminating in the work of Deligne (mid-1970s).

†Or more generally proper over Fq.
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Fundamental groups in algebraic geometry

A crucial analogy

A key construction in étale cohomology is the definition of the fundamental
group associated to X . This exploits the analogy between deck
transformations of covering spaces and automorphisms of field extensions.

(draw pictures here)
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Fundamental groups in algebraic geometry

The fundamental group of an algebraic variety

Let Fq(X ) denote the field of rational functions on X . Let GFq(X ) be the
Galois group of Fq(X ) (i.e., the group of automorphisms of a separable
algebraic closure of Fq(X )).

For each x ∈ X ◦, let κ(x) be the residue field of X at x , and let K (x) be
the completion of Fq(X ) at x (i.e., take the local ring of X at x , complete
for the maximal ideal, then take the fraction field). Then GK(x) injects
into GFq(X ) and surjects onto Gκ(x); the kernel of GK(x) → Gκ(x) is called
Ix (the inertia group of x).

The étale fundamental group π1(X ) is the quotient of GFq(X ) by the
smallest closed normal subgroup containing Ix for each x ∈ X ◦. Like
GFq(X ), it is a profinite topological group.

This still makes sense if we replace Fq with C. In this case, we get the
profinite completion of the topological fundamental group.
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Fundamental groups in algebraic geometry

Local systems in algebraic geometry

Let ` be a prime other than p. By an `-adic local system on X , I will mean
a continuous representation E of π1(X ) on a finite-dimensional Q`-vector
space.

For any morphism Y → X of varieties, I get a morphism π1(Y )→ π1(X ),
so I can pull back an `-adic local system on X to an `-adic local system on
Y . In particular, if Y = {x} is a closed point, then I get a
finite-dimensional Q`-vector space with the action of Gκ(x), which has a
distinguished generator (Frobenius). Let P(E , x) be the characteristic
polynomial of the action of this generator.

One can define étale cohomology with coefficients in a local system by
taking continuous group cohomology. This construction powers most of
the following discussion, but we won’t see much of it explicitly.
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Fundamental groups in algebraic geometry

A conjecture of Deligne: motivation

An `-adic local system E on X comes from geometry if it appears in the
relative étale cohomology of some smooth proper morphism f : Y → X .
Concretely, this means that for each x ∈ X ◦, P(E , x) shows up as a factor
in the zeta function of the fiber of f over x .

As a consequence of the Weil conjectures, `-adic local systems that come
from geometry have very strong arithmeticity properties. Deligne has
conjectured that every `-adic local system on X looks like it “comes from
geometry”, up to separating into irreducibles and taking twists.

To rigidify the situation enough to formulate the conjecture, we assume
that E is irreducible and that its determinant is a character of finite order;
this second restriction eliminates most twists.
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Fundamental groups in algebraic geometry

A conjecture of Deligne: formulation

Conjecture (Deligne, 1978)

Let E be an `-adic local system on X . Assume that E is irreducible and its
determinant is of finite order.

(i) The roots of P(E , x) in Q` are all algebraic over Q, and their
conjugates in C all lie on the unit circle.

(ii) The coefficients of P(E , x) lie in a number field depending only on E .

(iii) The roots of P(E , x) are p-units (i.e., integral over Z[p−1]).

(iv) For any p-adic valuation v on Q, the roots of P(E , x) all have
valuation in the range [−1

2 rank(E)v(#κ(x)), 1
2 rank(E)v(#κ(x))].

(v) Fix a prime `′ 6= p and an isomorphism of Q ⊂ Q` with Q ⊂ Q`′ .
Then there exists an `′-adic local system E ′ on X such that
P(E , x) = P(E ′, x) for all x ∈ X ◦. (We say E ′ is a companion of E .)

(vi) The analogue of (v) holds for `′ = p, whatever that means. (Deligne:
“On espére des petits camarades cristallins.”)

Kiran S. Kedlaya Companions in étale cohomology Cambridge, February 21, 2019 11 / 33
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A p-adic replacement for étale cohomology

What goes wrong for ` = p?

One can define étale cohomology with `-adic coefficients even for ` = p,
but this cannot be used in the same way to understand zeta functions.

A basic example of the key difficulty: if X is an elliptic curve over Fq, then

X [`](Fq) ∼=

{
(Z/`Z)2 (` 6= p)

0 or Z/`Z (` = p).

Consequently, if one computes the first étale cohomology with p-adic
coefficients, it has dimension 0 or 1 instead of 2, and thus fails to match
with the corresponding Betti number.
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A p-adic replacement for étale cohomology

p-adic analysis and zeta functions

Although I asserted previously that the rationality of Z (X ,T ) was
established using étale cohomology, this is historically inaccurate: it had
already been proved by Dwork using p-adic analysis.

This and subsequent developments inspired Grothendieck to propose
crystalline cohomology as a p-adic cohomology theory which could fill in
for étale cohomology when ` = p. It is modeled on cohomology of
differential forms (de Rham cohomology).

Crystalline cohomology only behaves well for (smooth) projective‡

varieties. The right cohomology to use for general smooth varieties is rigid
cohomology, defined by Berthelot based on a Dwork-style construction of
Monsky–Washnitzer for affine varieties (formal cohomology).

‡or proper
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A p-adic replacement for étale cohomology

The p-adic analogue of a local system

Berthelot’s theory includes a p-adic analogue of an `-adic local system,
called an overconvergent F -isocrystal. Such an object is (very loosely) a
vector bundle equipped with an integrable connection.

Crew was the first to suggest that overconvergent F -isocrystals could act
as the missing objects (the “petits camarades cristallins”) in part (vi) of
Deligne’s conjecture. One can also formulate Deligne’s conjecture with
` = p, taking E to be an overconvergent F -isocrystal.

Since the mid-1980s, it has been expected that rigid cohomology obeys
formal properties analogous to those of étale cohomology, to the extent
that (for example) it could be used to rederive the Weil conjectures. These
formal properties are now known, thanks to difficult work by many authors
(Abe, Berthelot, Chiarellotto, Caro, Crew, de Jong, K, Shiho, Tsuzuki).
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A p-adic replacement for étale cohomology

What is... an overconvergent F -isocrystal?

For X (smooth) affine, one can define§ overconvergent F -isocrystals and
their cohomology in terms of a smooth lift X of X over some finite
extension of Zp.

For concreteness, take the example X = An
Fq

. Let K be a finite extension
of Qp with residue field containing Fq and take X = An

oK
. The Raynaud

generic fiber of X is the closed unit n-disc over K ; take a vector bundle E
on it equipped with an integrable connection ∇ : E → E ⊗OX

Ω1
X/K . This

approximately¶ defines a convergent‖ isocrystal on X .

To add F , pick a morphism σ : X→ X lifting the absolute Frobenius map
x 7→ xp on X (e.g., in this example, take each coordinate to its p-th
power). Then a convergent F -isocrystal is a convergent isocrystal E
together with an isomorphism F : σ∗E → E that respects connections.
§One has to work to show that the definition doesn’t depend on anything but X .
¶Modulo a convergence condition on Taylor series which is forced by Frobenius.
‖To get an overconvergent isocrystal, one must extend to a slightly larger disc.
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A p-adic replacement for étale cohomology

A useful analogy

There is an exact sequence

1→ π1(XFq
)→ π1(X )→ GFq → 1.

The group π1(XFq
) is often easier to describe (e.g., for a projective curve

of genus g it is profinite on 2g generators with one relation) and has many
representations which cannot be extended to π1(X ); the interaction with
GFq imposes severe constraints.

Analogously, there exist lots of (over)convergent isocrystals, because they
can be described using only one structure (an integrable connection);
however, (over)convergent F -isocrystals are specified using two separate
structures which must be compatible in a nontrivial way.
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A p-adic replacement for étale cohomology

What is... rigid cohomology?

Given a convergent F -isocrystal E , the integrability condition means that
there is a de Rham complex

0→ E ∇→ E ⊗OX
Ω1
X/K

∇(2)

→ E ⊗OX
Ω2
X/K → · · ·

where ∇(2)(f ⊗ dg) = ∇(f ) ∧ dg . The cohomology∗∗ of this complex is
the rigid cohomology of X with coefficients in E (or for short, the
cohomology of E). These are finite-dimensional K -vector spaces (K, 2006).

To compare with `-adic cohomology, we want a K -linear action of F , but
right now this is off by an automorphism of K . We fix this by tensoring
over Qp with Qp and taking fixed subspaces for the automorphism of K

(acting trivially on Qp); this gives an Qp-vector space with linear F -action.

The same applies to the restriction to a closed point x , giving us the
Frobenius characteristic polynomial P(E , x). We can thus update
Deligne’s conjecture as follows...
∗∗If X were not affine, we would have to take hypercohomology instead.
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A p-adic replacement for étale cohomology

An updated version of Deligne’s conjecture

Conjecture (Updated version of Deligne’s conjecture)

Let E be an `-adic local system or an overconvergent F -isocrystal on X .
Assume that E is irreducible and its determinant is of finite order.

(i) The roots of P(E , x) in Q` are all algebraic over Q, and their
conjugates in C all lie on the unit circle.

(ii) The coefficients of P(E , x) lie in a number field depending only on E .

(iii) The roots of P(E , x) are p-units (i.e., integral over Z[p−1]).

(iv) For any p-adic valuation v on Q, the roots of P(E , x) all have
valuation in the range [−1

2 rank(E)v(#κ(x)), 1
2 rank(E)v(#κ(x))].

(v) Fix a prime `′ 6= p and an isomorphism of Q ⊂ Q` with Q ⊂ Q`′ .
Then there exists an `′-adic local system E ′ on X such that
P(E , x) = P(E ′, x) for all x ∈ X ◦. (We say E ′ is a companion of E .)

(vi) The analogue of (v) holds for `′ = p, taking E ′ to be an
overconvergent F -isocrystal.
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The situation in dimension 1

The Langlands correspondence for function fields

Let X be a curve over Fq, with smooth compactification X . Then Fq(X )
is a function field of transcendence degree 1, and as such is strongly
analogous to a number field. In particular, we may define its adèle ring
AFq(X ) by taking a restricted product of its completions at all places.

For any ` 6= p, Langlands conjectured†† a correspondence between rank-n
irreducible `-adic local systems with determinant of finite order and
cuspidal automorphic representations of GLn(AFq(X )) unramified on X , in
which P(E , x) matches the characteristic polynomial of a Hecke operator
attached to x .

For n = 1, this reproduces class field theory for Fq(X ). For n = 2, this was
shown by Drinfeld; for n > 2, this was done by L. Lafforgue.

One also has a similar correspondence involving overconvergent
F -isocrystals. This was shown by T. Abe, emulating Lafforgue.
††This is only the GLn case of the conjecture. For more general reductive groups, the

automorphic-to-geometric direction has recently been constructed by V. Lafforgue.
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The situation in dimension 1

The Langlands correspondence and geometric origins

As stated, the Langlands correspondence is not enough information for our
purposes. However, the proof gives much more: it shows that `-adic local
systems and overconvergent F -isocrystals come from geometry, specifically
from moduli spaces of shtukas (certain vector bundles with extra
structure); these act like Shimura varieties.

Combining this with the Langlands bijection, the matching of
characteristic polynomials (plus a similar statement about points of
X \ X ), and properties of étale and rigid cohomology, one gets a complete
resolution of Deligne’s (updated) conjecture when X is a curve.
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The situation in higher dimension
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The situation in higher dimension

Goodbye Langlands correspondence... and hello again

For X of dimension > 1, there is not even a conjectural analogue of the
Langlands correspondence that would provide a uniform source of
geometric origins for local systems. Even the analogue of class field theory
is quite subtle, and is a topic of active research.

Instead, we use the case of curves as a black box. For every curve in X , we
can use the correspondence to gather information; in addition, when two
curves cross at x , the values of P(E , x) on the two curves coincide.

For the components of Deligne’s conjecture that concern valuations of
roots of P(E , x) at individual points (parts (i), (iii), (iv)), this is essentially
enough; one only‡‡ needs to check that E “usually” remains irreducible
after restricting to a curve.

For the remaining components, more work is required; the general theme is
to exploit uniformity statements quantified over curves in X .
‡‡In fact, the paper of L. Lafforgue contains an error at this point which was later

corrected by Deligne. Several other approaches are also known.
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The situation in higher dimension

Deligne’s finiteness argument

Part (ii) of Deligne’s conjecture states that the P(E , x) all have
coefficients in a single number field. Deligne (2012) shows this by showing
that E is uniquely determined (up to semisimplification) by its P(E , x) for
x of degree up to some explicit bound. (By Galois theory, the field
generated by the coefficients of those P(E , x) contains all the rest.)

This can be done by restricting to curves, making sure that the cutoff
value can be chosen uniformly. This case is treated by a direct calculation
involving L-functions. A key point is that by replacing X with some finite
étale cover, one can kill all wild ramification of E , and thus control the
Euler characteristic by the Grothendieck–Ogg–Shafarevich formula.

This argument adapts easily to the case ` = p, modulo the key point: for
` 6= p, this is handled by choosing a lattice in the associated representation
and trivializing it mod `; any remaining ramification is of `-power order
and hence tame. For ` = p, something similar is true but deep (K, 2011).
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The situation in higher dimension

Drinfeld’s patching construction

Part (v) of Deligne’s conjecture involves constructing an `′-adic companion
of E . Since such an object is a representation of π1(X ), we can try to do
it by building a compatible family of mod-(`′)n representations.

Drinfeld (2012) proves this by interpolating this family from the
restrictions to curves, where we have such families using the Langlands
correspondence. The key point is that modulo any fixed power of `′, one
can build a finite family of representations such that for any curve, one of
these has the right restriction. Then an easy compactness argument lets
you put together the compatible family.

It is relatively easy to adapt this to the case where E is an overconvergent
F -isocrystal, since we are still assuming `′ 6= p. This was carried out
(independently) by Abe–Esnault and K (2017).
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The situation in higher dimension

A p-adic analogue of Drinfeld’s construction

Part (vi) of Deligne’s conjecture involves constructing a p-adic companion
of E . This is not a straightforward adaptation of the `-adic case, because
overconvergent F -isocrystals cannot be described in terms of
representations of π1(X ) (except in some trivial cases).

However, one can still execute a form of Drinfeld’s strategy (K, 2019).
One again takes an “exhaustive” family of curves (built using a variant of
Poonen’s Bertini theorem over finite fields), form the companion on each
of those using the Langlands correspondence, pick integral structures,
reduce modulo powers of p, and establish a finiteness property (this time
using slopes of vector bundles).
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The situation in higher dimension

Summary

Theorem (L. Lafforgue, Abe, Deligne, Drinfeld, Abe–Esnault, K)

Let E be an `-adic local system or an overconvergent F -isocrystal on X .
Assume that E is irreducible and its determinant is of finite order.

(i) The roots of P(E , x) in Q` are all algebraic over Q, and their
conjugates in C all lie on the unit circle.

(ii) The coefficients of P(E , x) lie in a number field depending only on E .

(iii) The roots of P(E , x) are p-units (i.e., integral over Z[p−1]).

(iv) For any p-adic valuation v on Q, the roots of P(E , x) all have
valuation in the range [−1

2 rank(E)v(#κ(x)), 1
2 rank(E)v(#κ(x))].

(v) Fix a prime `′ 6= p and an isomorphism of the algebraic closures of Q
within Q` and Q`′ . Then there exists an `′-adic local system E ′ on X
such that P(E , x) = P(E ′, x) for all x ∈ X ◦.

(vi) The analogue of (v) holds for `′ = p, taking E ′ to be an
overconvergent F -isocrystal.
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(iii) The roots of P(E , x) are p-units (i.e., integral over Z[p−1]).

(iv) For any p-adic valuation v on Q, the roots of P(E , x) all have
valuation in the range [−1

2 rank(E)v(#κ(x)), 1
2 rank(E)v(#κ(x))].

(v) Fix a prime `′ 6= p and an isomorphism of the algebraic closures of Q
within Q` and Q`′ . Then there exists an `′-adic local system E ′ on X
such that P(E , x) = P(E ′, x) for all x ∈ X ◦.

(vi) The analogue of (v) holds for `′ = p, taking E ′ to be an
overconvergent F -isocrystal.
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Some consequences of companions

Valuations of Frobenius eigenvalues

Parts (i), (iii), (iv) of the conjecture are concerned with archimedean,
`-adic, and p-adic valuations of roots of P(E , x). The archimedean
valuations are controlled by a positivity argument (Rankin–Deligne
squaring); this works equally well in étale and rigid cohomology.

By contrast, one can only control `-adic valuations in étale cohomology
and p-adic valuations in rigid cohomology. In particular, part (v) of the
conjecture implies part (iii), while part (vi) implies part (iv) (here using a
result of Drinfeld-K).
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Some consequences of companions

Newton polygons

Let v be a p-adic valuation on Qp. For each x ∈ X ◦, let N(E , x , v) denote
the (normalized) Newton polygon of P(E , x , v); that is, it is the graph of a
convex, piecewise linear function from [0, rank(E)] to R which has one
length-1 interval of slope v(α)/v(#κ(x)) for each root α of P(E , x). (Part
(iv) of the conjecture asserts that these slopes are at most 1

2 rank(E).)

For E an overconvergent F -isocrystal, the function x 7→ N(E , x , v) is
upper semicontinuous (Grothendieck–Katz); in particular, it takes only
finitely many values, and each value occurs on a locally closed stratum.
Moreover, jumps only occur in codimension 1 (de Jong–Oort).

For E an `-adic local system, the only way we know how to prove an
analogous statement is to verify (vi).

Concrete example: if E is an elliptic curve over Fq with q = pn and
aq = q + 1−#E (Fq), then aq is divisible by p iff it is divisible by pbn/2c.
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Some consequences of companions

p-adic companions and L-functions

To any `-adic local system E , we may define its associated L-function

L(E ,T ) =
∏
x∈X◦

det(1− FT , Ex)−1;

it is a rational function of T . Note that det(1− FT , Ex) is the reverse of
the polynomial P(E , x); consequently, Deligne’s conjecture implies
statements about the zeroes/poles of L(E ,T ) analogous to the Weil
conjectures.

If E admits a p-adic companion, we can also analyze the unit-root
L-function, in which (for some p-adic valuation) we retain only the factor
of det(1− FT ) consisting of roots of valuation 0; this is not typically a
rational function, but is a ratio of two p-adically entire power series
(Dwork’s conjecture, proved by Wan).
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Some consequences of companions

Geometric origins

In some cases, the existence of a p-adic companion can be used to
establish that an `-adic local system comes from geometry. Specifically,
one can show that certain rank-2 local systems arise from families of
abelian varieties (Krishnamoorthy-Pál).
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