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Setup and backstory

The main result

Throughout this talk, angles will be measured in radians, and a rational
angle means one whose measure is a rational multiple of π.

Theorem (conjecture of PR, 1995; theorem of KKPR, 2020)

A tetrahedron has all dihedral angles rational if and only if it appears in one
of 2 one-parameter families or a list of 59 sporadic cases (details below).

This is included in a stronger result:

Theorem (theorem of KKPR, 2020)

A configuration of lines through the origin in R3 has the property that any
two of the lines form a rational angle if and only if (classification to be
described below).
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Setup and backstory

Why tetrahedra with rational dihedral angles?

It is an open problem to decide which tetrahedra can be used to tile R3.
Some important partial results:

Regiomontanus, 1400s (refuting a claim of Aristotle): one cannot tile
R3 with regular tetrahedra.

Debrunner, 1980: Any tetrahedron which tiles1 R3 is rectifiable =
scissors-congruent to a cube (or equivalently to a parallelepiped).

Dehn, 1903: For any rectifiable tetrahedron, the Dehn invariant∑
jk

ℓjk ⊗ αjk ∈ R⊗Q R/πQ

is zero. Here ℓjk denotes the length of the edge between vertices j
and k , and αjk denotes the dihedral angle along that edge.

Sydler, 1965: Any tetrahedron with zero Dehn invariant is rectifiable.

1This result is quite broad in scope; e.g., it does not require periodicity.
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Setup and backstory

More on rectifiable tetrahedra

Many examples of rectifiable tetrahedra are known, but a complete
classification seems intractable.2

However, Conway–Jones (1974) observed that tetrahedra with rational
dihedral angles form a subclass of rectifiable tetrahedra which can in
principle be classified; in particular they reduced this to a finite (but
infeasible) computation.

Our contribution can be divided into three parts.

1 Further reduce this finite computation to a larger collection of smaller
computations.

2 Use computer algebra to reduce these computations to a single large
numerical computation.

3 Do the numerical computation rigorously.

2Our work handles the case where the angles span a 0-dimensional subspace of
R/πQ. Chentouf–Poonen–Sun handle the case where the span has dimension ≥ 5.
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Origin of this work: 1994–95

The diagonals of a regular polygon

In 1994, Poonen and Rubinstein3 did a summer internship at Bell Labs.
During this time, they solved4 the following problem: for n a positive
integer, express the number of interior points of a regular n-gon lying on
more than one diagonal in closed form in n. The main term is

(n
4

)
, with a

correction from cases where three or more diagonals concur at a point.

Key point: every three-way intersection corresponds to a solution of

cos θ1 + · · · + cos θ6 = 0, θ1, . . . , θ6 ∈ 2πQ.

We thus reduce to classifying 12-term additive relations among elements
of µ ⊆ C×, the group of roots of unity, i.e., solutions of

z1 + · · · + z12 = 0, z1, . . . , z12 ∈ µ.

3Poonen had just finished his PhD; Rubinstein finished his in 1998.
4BP and MR, The number of intersection points made by the diagonals of a regular

polygon, SIAM J. Discrete Math. 11 (1998), 135–156.
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Origin of this work: 1994–95

The case n = 30 (illustration from Poonen–Rubenstein)

The 30-gon with its diagonals. There are 16801 interior intersection points: 13800 two line intersections, 2250 three line
intersections, 420 four line intersections, 180 five line intersections, 120 six line intersections, 30 seven line intersections, and 1

fifteen line intersection. [Note:
(
30
4

)
= 27405.]
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Origin of this work: 1994–95

Classifying sums of roots of unity

It is natural to rephrase in terms of classifying solutions of

z1 + · · · + zn = 0, z1, . . . , zn ∈ µ

which are minimal5, i.e., no nonempty proper subset sums to zero
(modulo the symmetries of permutation and scalar multiplication).

For example, for n = 2, we must have z2 = −z1. For n = 3, we must have

(z1, z2, z3) ∼ (1, ζ3, ζ
2
3 ) (ζ3 = e2πi/3).

For n = 4, there are no minimal relations. For n = 5, we must have

(z1, . . . , z5) ∼ (1, ζ5, . . . , ζ
4
5 ) (ζ5 = e2πi/5).

For n = 6, things start to get interesting: we must have

(z1, . . . , z6) ∼ (ζ5, . . . , ζ
4
5 ,−ζ3,−ζ23 ).

5Warning: every relation splits as a disjoint sum of minimals, but not uniquely.
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Origin of this work: 1994–95

Classifying sums of roots of unity (continued)

It is known that for any fixed n, the classification of additive relations
among at most n roots of unity reduces to a finite computation (described
by Conway–Jones using ideas of Cassels). This has been carried out in
these cases:

n ≤ 7: Mann, 1965.

n ≤ 8: W lodarski, 1969.

n ≤ 9: Conway–Jones, 1976.

n ≤ 12: Poonen–Rubinstein, 1998.

n ≤ 21: Christie–Dykema–Klep, 2020 (preprint).6

While doing a literature search, Poonen–Rubinstein found the
Conway–Jones paper and its proposal to identify tetrahedra with rational
dihedral angles. Game on!

6These authors were motivated by applications in combinatorics, of which there are
many. Please let me know your favorites!
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Origin of this work: 1994–95
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First steps: 1995–1998

The Gram determinant

We can classify tetrahedra with rational dihedral angles by classifying
4-tuples of unit vectors in R3 which form all rational angles.

Here we follow a suggestion7 of Igor Rivin. Let M be the 3 × 4 matrix
with these column vectors; then

A = MTM =


1 cos θ12 cos θ13 cos θ14

cos θ12 1 cos θ23 cos θ24
cos θ13 cos θ23 1 cos θ34
cos θ14 cos θ24 cos θ34 1


has rank at most 3, so its determinant is 0. Rescaling, the equation
det(2A) = 0 is a polynomial in the six variables zjk = e iθjk , which we want
to take values which are roots of unity.

7The wording in Conway–Jones suggests that they had this setup in mind, but they
do not spell out enough details to be certain.
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First steps: 1995–1998

Numerical computations and a conjecture

By computing examples with zjk ∈ µN for N ≤ 210, Poonen–Rubinstein
arrived at the following conjecture, which we prove in our work.

Theorem (conjecture of PR, 1995; theorem of KKPR, 2020)

Up to symmetry, any tetrahedron in R3 with all dihedral angles rational is
either one of 59 sporadic examples (next slide) or has one of the forms(π

2
,
π

2
, π − 2x ,

π

3
, x , x

)
for

π

6
< x <

π

2
,(

5π

6
− x ,

π

6
+ x ,

2π

3
− x ,

2π

3
− x , x , x

)
for

π

6
< x ≤ π

3
.

The first parametric example was discovered by Hill in 1895. The second
example was discovered by Poonen–Rubinstein, but turns out to be related
to the first via a symmetry not generated by S4; more on this later.

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 13 / 28



First steps: 1995–1998

Numerical computations and a conjecture

By computing examples with zjk ∈ µN for N ≤ 210, Poonen–Rubinstein
arrived at the following conjecture, which we prove in our work.

Theorem (conjecture of PR, 1995; theorem of KKPR, 2020)

Up to symmetry, any tetrahedron in R3 with all dihedral angles rational is
either one of 59 sporadic examples (next slide) or has one of the forms(π

2
,
π

2
, π − 2x ,

π

3
, x , x

)
for

π

6
< x <

π

2
,(

5π

6
− x ,

π

6
+ x ,

2π

3
− x ,

2π

3
− x , x , x

)
for

π

6
< x ≤ π

3
.

The first parametric example was discovered by Hill in 1895. The second
example was discovered by Poonen–Rubinstein, but turns out to be related
to the first via a symmetry not generated by S4; more on this later.

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 13 / 28



First steps: 1995–1998

Numerical computations and a conjecture

By computing examples with zjk ∈ µN for N ≤ 210, Poonen–Rubinstein
arrived at the following conjecture, which we prove in our work.

Theorem (conjecture of PR, 1995; theorem of KKPR, 2020)

Up to symmetry, any tetrahedron in R3 with all dihedral angles rational is
either one of 59 sporadic examples (next slide) or has one of the forms(π

2
,
π

2
, π − 2x ,

π

3
, x , x

)
for

π

6
< x <

π

2
,(

5π

6
− x ,

π

6
+ x ,

2π

3
− x ,

2π

3
− x , x , x

)
for

π

6
< x ≤ π

3
.

The first parametric example was discovered by Hill in 1895. The second
example was discovered by Poonen–Rubinstein, but turns out to be related
to the first via a symmetry not generated by S4; more on this later.

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 13 / 28



First steps: 1995–1998

Sporadic tetrahedra (key on the next slide)

N (α12, α34, α13, α24, α14, α23) as multiples of π/N

12 (3, 4, 3, 4, 6, 8) = H2(π/4)
24 (5, 9, 6, 8, 13, 15)
12 (3, 6, 4, 6, 4, 6) = T0
24 (7, 11, 7, 13, 8, 12)
15 (3, 3, 3, 5, 10, 10) = T18, (2, 4, 4, 4, 10, 10), (3, 3, 4, 4, 9, 11)
15 (3, 3, 5, 5, 9, 9) = T7
15 (5, 5, 5, 9, 6, 6) = T23, (3, 7, 6, 6, 7, 7), (4, 8, 5, 5, 7, 7)
21 (3, 9, 7, 7, 12, 12), (4, 10, 6, 6, 12, 12), (6, 6, 7, 7, 9, 15)
30 (6, 12, 10, 15, 10, 20) = T17, (4, 14, 10, 15, 12, 18)
60 (8, 28, 19, 31, 25, 35), (12, 24, 15, 35, 25, 35), (13, 23, 15, 35, 24, 36), (13, 23, 19, 31, 20, 40)
30 (6, 18, 10, 10, 15, 15) = T13, (4, 16, 12, 12, 15, 15), (9, 21, 10, 10, 12, 12)
30 (6, 6, 10, 12, 15, 20) = T16, (5, 7, 11, 11, 15, 20)
60 (7, 17, 20, 24, 35, 35), (7, 17, 22, 22, 33, 37), (10, 14, 17, 27, 35, 35), (12, 12, 17, 27, 33, 37)
30 (6, 10, 10, 15, 12, 18) = T21, (5, 11, 10, 15, 13, 17)
60 (10, 22, 21, 29, 25, 35), (11, 21, 19, 31, 26, 34), (11, 21, 21, 29, 24, 36), (12, 20, 19, 31, 25, 35)
30 (6, 10, 6, 10, 15, 24) = T6
60 (7, 25, 12, 20, 35, 43)
30 (6, 12, 6, 12, 15, 20) = T2
60 (12, 24, 13, 23, 29, 41)
30 (6, 12, 10, 10, 15, 18) = T3, (7, 13, 9, 9, 15, 18)
60 (12, 24, 17, 23, 33, 33), (14, 26, 15, 21, 33, 33), (15, 21, 20, 20, 27, 39), (17, 23, 18, 18, 27, 39)
30 (6, 15, 6, 18, 10, 20) = T4, (6, 15, 7, 17, 9, 21)
60 (9, 33, 14, 34, 21, 39), (9, 33, 15, 33, 20, 40), (11, 31, 12, 36, 21, 39), (11, 31, 15, 33, 18, 42)
30 (6, 15, 10, 15, 12, 15) = T1, (6, 15, 11, 14, 11, 16), (8, 13, 8, 17, 12, 15),

(8, 13, 9, 18, 11, 14), (8, 17, 9, 12, 11, 16), (9, 12, 9, 18, 10, 15)
30 (10, 12, 10, 12, 15, 12) = T5
60 (19, 25, 20, 24, 29, 25)
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First steps: 1995–1998

How to read the table

Each tetrahedron is represented by an integer N and a list of six integers,
representing the dihedral angles α12, α34, α13, α24, α14, α23 as multiples of
π
N . (Here αjk means the angle between faces j and k .)

The extra labels indicate examples of tetrahedra that we found in the
literature as examples of rectifiable tetrahedra. All of these come from
4-line configurations within the maximal 9-line and 15-line configurations.

The groups between horizontal lines are orbits for the “big” symmetry
group (more on this later).
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First steps: 1995–1998

Bad news and good news

The bad news: we would like to solve by treating each monomial in
det(2A) = 0 as a separate root of unity and classifying additive relations.
But there are 105 monomials, far beyond the feasible range.

The good news: the equation reduces modulo 2 to an equation with only
12 terms! Fortunately, one can also classify additive relations modulo 2 in
a similar manner: every minimal mod-2 additive relation is the reduction of
a genuine additive relation.8

Fitting the classification against the mod-2 polynomial, we obtain a bunch
of solutions in up to 3 parameters. What then remains is to find the
solutions of the original equation.

8Using the Christie–Dykema–Klep work, we showed with Toren D’Nelly-Warady that
this persist up to n ≤ 18 but fails for n = 19: there is a minimal relation of length 21
with a repeated summand.
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Halftime: 1998–2020
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Halftime: 1998–2020

Halftime!

This problem was proposed for the 2005 Duluth REU. Jack Huizenga
worked on it but concluded that it was infeasible at the time.
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Halftime: 1998–2020

A forgotten symmetry

In 1968, the physicists Ponzano and Regge made a remarkable discovery
about the geometry of tetrahedra. This seems to have gone unnoticed by
mathematicians until the work of Justin Roberts in 1999.

Theorem (Ponzano–Regge, 1968; Roberts, 1999)

For any tetrahedron with edge lengths ℓjk and dihedral angles αjk , set

s :=
1

2
(ℓ13 + ℓ24 + ℓ14 + ℓ23), x =

1

2
(α13 + α24 + α14 + α23).

Then the tuples

(ℓ12, ℓ34, s − ℓ13, s − ℓ24, s − ℓ14, s − ℓ23),

(α12, α34, x − α13, x − α24, x − α14, x − α23)

form the edge lengths and dihedral angles of another tetrahedron.
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Halftime: 1998–2020

Effect of the Regge symmetry

The Gram equation det(2A) = 0 has an obvious symmetry by S4, but
adding the Regge symmetry gives the much larger group W (D6) of order
256! = 23040.

This implies a significant simplification in our approach. For instance, of
the mod-2 solutions, there are initially 5760 three-parameter families, but
the W (D6)-action reduces this to 14.
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Endgame: 2020
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Endgame: 2020

More on equations in roots of unity

By restricting the Gram equation to parametric solutions of the mod-2
equation, we obtain a few hundred subproblems of the form (with n ≤ 3):
for some polynomial P(z1, . . . , zn) over Q(ζm) for some m, find all
solutions of P(z1, . . . , zn) = 0 with z1, . . . , zn ∈ µ. These polynomials are
not necessarily sparse, so the Conway–Jones approach is not always
applicable.

This problem is easy when n = 1. It turns out there is an efficient
approach for n > 1 which is very practical for n = 2 and workable for
n = 3 (but as yet not for n ≥ 4).

Aside: this is closely related to effective approaches to finding torsion
points on algebraic curves (as in the Manin–Mumford conjecture).
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Endgame: 2020

A key example: the algorithm of Beukers–Smyth

Lemma

For P(x , y) ∈ Z[x , y ], every solution of P(x , y) = 0 with x , y ∈ µ is also a
solution of one of

P(x ,−y) = 0, P(−x , y) = 0, P(−x ,−y) = 0,

P(x2, y2) = 0, P(x2,−y2) = 0, P(−x2, y2) = 0, P(−x2,−y2) = 0.

Proof sketch: the groups ⟨x , y⟩/⟨x⟩, ⟨x , y⟩/⟨y⟩ are finite and their orders
are not both even. Split into cases based on these orders mod 4.

As long as P is not of the form x iy jQ(x2, y2), each solution ends up in a
system of two equations with only finitely many solutions over C. It is
easy to pick out the solutions in roots of unity.
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Endgame: 2020

The proof strategy (again)

Using computer algebra (mostly SageMath), we find a collection of
(sometimes parametric) solutions in roots of unity to the Gram equation.

We can check by inspection that the parametric solutions correspond to
exactly the known ones.

As for the isolated solutions, it is easiest to just check that they all involve
N-th roots of unity for some N ≤ 420, and rerun9 the numerical
computation to find all sporadic solutions up to that point.

Note: we also end up classifying degenerate solutions to the Gram
equation. This yields an extra result...

9For this we use Rubinstein’s C code from 1995, which still works!
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Bonus: rational-angle line configurations

A classification theorem

By a rational-angle line configuration, I mean a set of lines in R3

through the origin such that any two form a rational angle.

Theorem (KKPR, 2020)

The maximal rational-angle line configurations are classified as in the
following table.

n number of maximal rational-angle n-line configurations

ℵ0 1
15 1
9 1
8 5
6 22, plus 5 one-parameter families
5 29, plus 2 one-parameter families
4 228, plus 10 one-parameter families and 2 two-parameter families
3 1 three-parameter family (the trivial one)

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 26 / 28



Bonus: rational-angle line configurations

A classification theorem

By a rational-angle line configuration, I mean a set of lines in R3

through the origin such that any two form a rational angle.

Theorem (KKPR, 2020)

The maximal rational-angle line configurations are classified as in the
following table.

n number of maximal rational-angle n-line configurations

ℵ0 1
15 1
9 1
8 5
6 22, plus 5 one-parameter families
5 29, plus 2 one-parameter families
4 228, plus 10 one-parameter families and 2 two-parameter families
3 1 three-parameter family (the trivial one)

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 26 / 28



Bonus: rational-angle line configurations

A classification theorem

By a rational-angle line configuration, I mean a set of lines in R3

through the origin such that any two form a rational angle.

Theorem (KKPR, 2020)

The maximal rational-angle line configurations are classified as in the
following table.

n number of maximal rational-angle n-line configurations

ℵ0 1
15 1
9 1
8 5
6 22, plus 5 one-parameter families
5 29, plus 2 one-parameter families
4 228, plus 10 one-parameter families and 2 two-parameter families
3 1 three-parameter family (the trivial one)

Kiran S. Kedlaya (UC San Diego) Tetrahedra with rational dihedral angles Duluth, August 4, 2023 26 / 28
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Three maximal configurations

The maximal configurations of size ℵ0, 15, 9 can be depicted as follows.

L

The left figure consists of a family of lines perpendicular to the red line. In
the other two figures, one draws the diameters through the marked points,
in either the icosidodecahedron or the B3 root system.

There are 5 different 8-line configurations consisting of seven central
diagonals of a regular 60-gon, plus an eighth line not in the same plane.
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Happy birthday Joe!
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