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Overconvergent F -isocrystals on curves

Basic setup

Let k be a perfect field of characteristic p > 0. We sometimes assume
that k is finite, in which case q := #k .

Let X be a smooth, projective, geometrically irreducible curve over k . Let
X be a nonempty open affine subscheme of X . Let Z be the (reduced)
complement of X in X .

Let g be the genus of X . Let m be the k-length of Z .
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Overconvergent F -isocrystals on curves

Lifts to characteristic 0

Let X be1 a smooth projective scheme over W (k) (the Witt vectors)
equipped with an isomorphism Xk

∼= X .

Let Z be a smooth divisor in X such that Zk ⊂ Xk is identified with
Z ⊂ X .

Let K be the fraction field of W (k). Let X
an
K be the analytification2 of

XK . We may then view ZK as a closed analytic subspace of X
an
K .

1Reminder: such a lift always exists because of the smoothness of the moduli stack
of curves.

2For this talk, it is immaterial whether this is done in the category of rigid analytic
spaces, Berkovich analytic spaces, or Huber adic spaces.
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Overconvergent F -isocrystals on curves

Strict neighborhoods

We may also view X
an
K as the Raynaud generic fiber of the formal

completion of X along Xk . Let X be the open formal subscheme of the
completion supported on X ⊂ X , and let Xan

K ⊂ X
an
K denote the Raynaud

generic fiber of X.

The complement of Xan
K in X

an
K consists of a finite union of virtual3 open

discs. A strict neighborhood of Xan
K in X

an
K is an open neighborhood of

Xan
K whose complement in X

an
K is contained in some quasicompact open

subspace of the complement of Xan
K . That is, one replaces each open disc

with some disc of strictly smaller radius.

3That is, these become open discs after a finite base extension on k, to make the
points of Z become k-rational.
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Overconvergent F -isocrystals on curves

Overconvergent F -isocrystals

Let φK : K → K be the Witt vector Frobenius. An overconvergent
F -isocrystal on X is a vector bundle E with connection4 on some5 strict
neighborhood V of Xan

K in X
an
K , together with an isomorphism φ∗

V E ∼= E of
vector bundles with connection where φV : V → V is some φK -semilinear
map extending an absolute Frobenius lift on Xan

K .

Let FIsoc†(X ) be the category of overconvergent F -isocrystals on X
(where morphisms respect the connection and Frobenius structure). As
the notation suggests, this category is functorial in X ; in particular it does
depend on the choice of the lift X of X .

These objects show up in Berthelot’s rigid cohomology as the analogue
of Weil Qℓ-sheaves in étale cohomology. More on this later.

4No integrability condition because dim(X ) = 1.
5The strict neighborhood is unspecified; that is, the category of overconvergent

F -isocrystals is a 2-colimit over choices of the strict neighborhood.
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Local monodromy and uniformity

Local isocrystals

What is the analogue of FIsoc†(X ) with X replaced by s = Spec k((t))?

The Robba ring RK is the colimit (= union) of the rings of analytic
functions over K on the annulus ρ < |t| < 1 as ρ → 1−. Such functions
can be identified with Laurent series

∑
n∈Z cnt

n with cn ∈ K such that

lim sup
n→−∞

|cn|ρn < ∞ for some ρ ∈ (0, 1)

lim sup
n→+∞

|cn|ρn < ∞ for all ρ ∈ (0, 1).

We take FIsoc†(s) to be the category of finite free6 modules over RK

equipped with compatible actions of the derivation d
dt and some Frobenius

lift φ on RK . Again, this implies the same for any other choice of φ.

For x ∈ Z (k), we get a pullback functor FIsoc†(X ) → FIsoc†(s).

6Any finite projective module over RK is in fact free.
Kiran S. Kedlaya (UC San Diego) Uniformities for F -isocrystals on curves Dwork seminar, April 5, 2023 8 / 34



Local monodromy and uniformity

Local isocrystals

What is the analogue of FIsoc†(X ) with X replaced by s = Spec k((t))?

The Robba ring RK is the colimit (= union) of the rings of analytic
functions over K on the annulus ρ < |t| < 1 as ρ → 1−. Such functions
can be identified with Laurent series

∑
n∈Z cnt

n with cn ∈ K such that

lim sup
n→−∞

|cn|ρn < ∞ for some ρ ∈ (0, 1)

lim sup
n→+∞

|cn|ρn < ∞ for all ρ ∈ (0, 1).

We take FIsoc†(s) to be the category of finite free6 modules over RK

equipped with compatible actions of the derivation d
dt and some Frobenius

lift φ on RK . Again, this implies the same for any other choice of φ.

For x ∈ Z (k), we get a pullback functor FIsoc†(X ) → FIsoc†(s).

6Any finite projective module over RK is in fact free.
Kiran S. Kedlaya (UC San Diego) Uniformities for F -isocrystals on curves Dwork seminar, April 5, 2023 8 / 34



Local monodromy and uniformity

Local isocrystals

What is the analogue of FIsoc†(X ) with X replaced by s = Spec k((t))?

The Robba ring RK is the colimit (= union) of the rings of analytic
functions over K on the annulus ρ < |t| < 1 as ρ → 1−. Such functions
can be identified with Laurent series

∑
n∈Z cnt

n with cn ∈ K such that

lim sup
n→−∞

|cn|ρn < ∞ for some ρ ∈ (0, 1)

lim sup
n→+∞

|cn|ρn < ∞ for all ρ ∈ (0, 1).

We take FIsoc†(s) to be the category of finite free6 modules over RK

equipped with compatible actions of the derivation d
dt and some Frobenius

lift φ on RK . Again, this implies the same for any other choice of φ.

For x ∈ Z (k), we get a pullback functor FIsoc†(X ) → FIsoc†(s).

6Any finite projective module over RK is in fact free.
Kiran S. Kedlaya (UC San Diego) Uniformities for F -isocrystals on curves Dwork seminar, April 5, 2023 8 / 34



Local monodromy and uniformity

Local isocrystals

What is the analogue of FIsoc†(X ) with X replaced by s = Spec k((t))?

The Robba ring RK is the colimit (= union) of the rings of analytic
functions over K on the annulus ρ < |t| < 1 as ρ → 1−. Such functions
can be identified with Laurent series

∑
n∈Z cnt

n with cn ∈ K such that

lim sup
n→−∞

|cn|ρn < ∞ for some ρ ∈ (0, 1)

lim sup
n→+∞

|cn|ρn < ∞ for all ρ ∈ (0, 1).

We take FIsoc†(s) to be the category of finite free6 modules over RK

equipped with compatible actions of the derivation d
dt and some Frobenius

lift φ on RK . Again, this implies the same for any other choice of φ.

For x ∈ Z (k), we get a pullback functor FIsoc†(X ) → FIsoc†(s).

6Any finite projective module over RK is in fact free.
Kiran S. Kedlaya (UC San Diego) Uniformities for F -isocrystals on curves Dwork seminar, April 5, 2023 8 / 34



Local monodromy and uniformity

Tame local monodromy

Given E ∈ FIsoc†(s), for ρ ∈ (0, 1) sufficiently large we can restrict to the
disc |t − tρ| < ρ where tρ is a generic point7 with |tρ| = ρ.

Theorem (Christol-Mebkhout, late 1990s)

There exists b = b(E) ∈ Q≥0 such that as ρ → 1−, the restriction of E to
|t − tρ| < ρ has a basis of horizontal sections on |t − tρ| < ρ1+c iff c ≤ b.

We say E is tame if b(E) = 0. (In older literature, E satisfies the Robba
condition.)

7In rigid geometry, generic points only appear after a large base extension. They
occur more naturally in Berkovich and Huber spaces.
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Local monodromy and uniformity

The p-adic local monodromy theorem

The bounded germs in RK form a two-dimensional local field with residue
field k((t)), which is incomplete but henselian. Hence finite separable
extensions of k((t)) canonically induce finite extensions of RK .

Theorem (André, K, Mebkhout, early 2000s)

For any E ∈ FIsoc†(s), the pullback of E along some finite separable
extension of k((t)) is tame.

This corresponds roughly to Grothendieck’s local monodromy theorem for
étale lisse Qℓ-sheaves.
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Local monodromy and uniformity

Local monodromy representations and wild ramification

Using the pLMT, one can associate8 to E ∈ FIsoc†(s) a representation

ρE : π1(s) → GLr (Qp), r = rank(E).

Theorem (Matsuda, early 2000s)

The highest ramification break of ρE equals b(E). In particular, E is tame
if and only if ρE is tame.

8This construction forgets extensions, so it factors through the semisimplification of
E as a vector bundle with connection.
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A local uniformity problem
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A local uniformity problem

Domain of definition controls ramification

Conjecture

Choose E ∈ FIsoc†(s) of rank r which can be realized as a vector bundle
with connection and Frobenius structure on ρ < |t| < 1 for some fixed ρ.
Then b(E) is bounded by some function of p, r , ρ.

A known special case: if E extends to a logarithmic connection across the
entire disc |t| < 1, then E must be tame (see below for a more precise
statement).
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A local uniformity problem

Ramification controls domain of definition

Conjecture (work in progress)

Any E ∈ FIsoc†(s) of rank r with b(E) = b can be realized as a vector
bundle with connection and Frobenius structure on ρ < |t| < 1 for some ρ
depending only on p, r , b. Moreover, E admits a generating set on which
the actions of the connection and Frobenius are bounded in operator norm
by a function of p, r , b.

It would also be of interest to identify optimal bounds. However, any
bounds at all would imply some improvements in “cut-by-curves” criteria
for overconvergence of convergent F -isocrystals (Shiho, Grubb–K–Upton).
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A local uniformity problem

More remarks

Progress on these conjectures may have some applications in mixed
characteristic, e.g., to the study of Emerton–Gee–Hellmann’s moduli
stacks of (φ, Γ)-modules.

In general, uniformity problems for overconvergent F -isocrystals on curves
must account for the wild ramification at all points of Z . However,
resolution of these conjecture will (probably) allow these problems to be
reduced to the case where everything is tame; for this reason, I restrict all
subsequent conjectures to the tame setting.
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Tame isocrystals

Logarithmic extensions

We say E ∈ FIsoc†(X ) is tame if for every z ∈ Z , after making a base
extension to ensure that z ∈ Z (k), the pullback of E to FIsoc†(s) defined
by z is tame (i.e., its local monodromy representation is tame).

Theorem

E is tame iff it extends to a vector bundle with logarithmic connection on
(X

an
K ,Zan

K ) with exponents in Z(p). In this case, there is a unique such
extension with exponents in Z(p) ∩ [0, 1).

Beware that we cannot include the Frobenius structure in this statement
because in general there is no Frobenius lift on all of X

an
K . We will work

around this later.
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extension with exponents in Z(p) ∩ [0, 1).

Beware that we cannot include the Frobenius structure in this statement
because in general there is no Frobenius lift on all of X

an
K . We will work

around this later.
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Tame isocrystals

GAGA+GAGA

Theorem

If E ∈ FIsoc†(X ) is tame, then any logarithmic extension on (X
an
K ,Zan

K )
with exponents in Z(p) is the pullback of a vector bundle with logarithmic

connection on the log scheme (XK ,ZK ).

This follows from the previous statement using the analogue of Serre’s
GAGA9 theorem with C replaced by K .

On the other hand, since K is a field of characteristic 0 of cardinality 2ℵ0 ,
it admits an algebraic (but not topological!) embedding into C. We can
thus choose such an embedding, pull back from XK to XC, then apply
results of complex analytic geometry via standard GAGA.

9Acronym of Serre’s paper “Géométrie Algébrique et Géométrie Analytique”.
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Tame isocrystals

An example of GAGA+GAGA

Theorem

Suppose that E ∈ FIsoc†(X ) is tame with nilpotent residues, and let E be
its logarithmic extension to (XK ,ZK ) with nilpotent residues. Then the
first Chern class of E is zero; in particular, deg(E ) = 0.

Proof.

It is equivalent to check the claim after replacing E and E with their top
exterior powers. Using GAGA+GAGA, we reduce to the statement that a
line bundle on a compact Riemann surface admitting a connection (with
no logarithmic singularities) has degree 0. This case is due to Atiyah.
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Uniformity for the jumping locus
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Uniformity for the jumping locus

Newton polygons and the jumping locus

For r , s ∈ Z with r > 0 and gcd(r , s) = 1, the formula

F (e1) = e2, . . . , F (er−1) = er , F (er ) = pse1.

defines an object Es,r ∈ FIsoc†(Spec k).

Theorem (Dieudonné–Manin)

For k = k , every object E ∈ FIsoc†(Spec k) decomposes as a direct sum of
various objects of the form Es,r . This decomposition is not unique in
general, but the associated isotypical decomposition is unique.

We associate to E the Newton polygon with the slope s
r with multiplicity

equal to the rank of the isotypical summand corresponding to Es,r .

This behaves like the Newton polygon of a linear operator on a vector
space over Qp. In particular, it behaves well with respect to
tensor/symmetric/exterior powers and duals.
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Uniformity for the jumping locus

Semicontinuity for Newton polygons

For E ∈ FIsoc†(X ), for any point x ∈ X (including the generic point η),
define the Newton polygon of E at x by pullback to a geometric point over
x (it does not matter which one).

Theorem (Grothendieck–Katz, 1960s)

For E ∈ FIsoc†(X ), the Newton polygon of E at x lies on or above the
Newton polygon at η. Moreover, the endpoints always stay the same, and
equality holds for x in some open dense subset of X .

Define the jumping locus of E as the set of x ∈ X at which the Newton
polygon does not agree with η.
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Uniformity for the jumping locus

Bounding the jumping locus

Theorem (Tsuzuki, K)

For E ∈ FIsoc†(X ) tame, the length of the jumping locus can be bounded
in terms of p, g ,m, r .

For k finite, this can be proved using L-functions. For general k , it will
follow from uniformity for crystalline lattices (see below).

In many cases, one can compute the exact length of the jumping locus
using “transversality of Frobenius” (e.g., on modular curves). Is there a
general result of this form?
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Uniformity for crystalline lattices
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Uniformity for crystalline lattices

Crystalline lattices

For E ∈ FIsoc†(X ) tame with nilpotent residues, let EK be the logarithmic
extension to (XK ,ZK ) with nilpotent residues.

A lattice in E is an extension of EK to a vector bundle10 E with
logarithmic connection on (X,Z).

Let ηX be the generic point of X . A lattice E is crystalline if its pullback
to the completed localization of X at ηX is stable under the action on E
of any Frobenius structure.

Theorem

E admits a crystalline lattice if and only if its Newton polygon at ηX has
all nonnegative slopes. (The same is then true everywhere on X .)

10Since X is regular of dimension 2, any reflexive extension is already a vector bundle.
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Uniformity for crystalline lattices

Crystalline lattices and the global action of Frobenius

In the definition of a crystalline lattice E , there is no way to say directly
that “E is preserved by Frobenius structures” because the latter are not
defined everywhere on X

an
K .

However, we do get a well-defined Frobenius action on the pullback Ek of
E to X . This is not an isomorphism: its generic rank is the multiplicity of
0 in the Newton polygon at ηX .

By the same token, the rank of the Frobenius action at any x ∈ X is the
multiplicity of 0 in the Newton polygon at x . This means that we can
control the length of the locus at which this multiplicity drops by bounding
the degree of the image of Frobenius on Ek .

Hence using this construction for E and suitable twists of its exterior
powers, we can detect the jumping locus of E .
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Uniformity for crystalline lattices

Slopes of vector bundles

Let C be a curve over a field L of any characteristic. Let F be a vector
bundle on C .

The determinant det(F ) = ∧rank(F )F .

The degree deg(F ) := deg(det(F )) where degree of a line bundle
means the degree of a nonzero rational section.

For F ̸= 0, the slope µ(F ) := deg(F )
rank(F ) . If H

0(C ,F ) ̸= 0 then

µ(F ) ≥ 0; the converse is false, but if µ(F ) > 2g − 2 then
H0(C ,F ) ̸= 0 (Riemann-Roch).

For F ̸= 0, F is stable (resp. semistable) if there is no nonzero
proper subbundle G of F with µ(G ) ≥ µ(F ) (resp. µ(G ) > µ(F )).
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Uniformity for crystalline lattices

Harder–Narasimhan polygons

For C , L,F as above, there exists a unique filtration

F = F0 ⊃ · · · ⊃ Fl = 0

such that:

(a) each successive quotient Fi/Fi+1 is semistable;

(b) for µi := µ(Fi/Fi+1), we have µ1 > · · · > µl .

This is the HN (Harder–Narasimhan) filtration of F . The HN polygon
of F is the Newton polygon with slope µi of multiplicity rank(Fi/Fi+1).

The HN polygon is semicontinuous under specialization. In particular, for
E a crystalline lattice, bounding the HN polygon of Ek also bounds the
HN polygon of EK , but not conversely.
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Uniformity for crystalline lattices

Theorem

For E ∈ FIsoc†(X ) tame with nilpotent residues of rank r with
nonnegative Newton slopes, there exists a crystalline lattice E such that
the HN polygon of Ek is bounded (above and below) in terms of p, g ,m, r .

The key point: if E is irreducible, then the gaps between consecutive HN
slopes of Ek are bounded. To wit, a large gap implies an exact sequence

0 → Ek,1 → Ek → Ek,2 → 0

in which Ek,1 is forced to be stable under the Frobenius and connection.
We then get a new lattice E ′ with an exact sequence

0 → Ek,2 → E ′
k → Ek,1 → 0.

These steps form a walk through a bounded subset of the Bruhat–Tits
building for GLr (Qp), which eventually terminates at a good lattice.
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Uniformities in the construction of crystalline companions

A remark about coefficient fields

From now on, assume k is finite.

The category FIsoc†(X ) is a Qp-linear tensor category. For any finite
extension L of Qp, we may form the category FIsoc†(X )⊗ L consisting of
objects of FIsoc†(X ) equipped with a Qp-linear L-action. By taking a
2-colimit over L, we obtain the category FIsoc†(X )⊗Qp.

This is the p-adic analogue of the category of étale Weil Qℓ-sheaves on X
for some prime ℓ ̸= p. Forgetting11 Frobenius actions gives an analogue of
the category of étale lisse Qℓ-sheaves on Xk .

In particular, FIsoc†(Spec k)⊗Qp is equivalent to the category of

finite-dimensional Qp-vector spaces equipped with a Qp-linear
automorphism.

11This requires some care, as an isocrystal without Frobenius structure is not just a
vector bundle with connection on a strict neighborhood; there is an extra convergence
condition on the Taylor isomorphism.
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Uniformities in the construction of crystalline companions

The theorem on crystalline companions

Theorem (K, 2023)

Let Y be a smooth k-scheme. Fix on Q a place v1 above ℓ ̸= p and a place
v2 above p. Let E be an étale lisse Qℓ-sheaf which is irreducible with finite
determinant. Then there exists a unique F ∈ FIsoc†(Y )⊗Qp such that at
each y ∈ Y , the characteristic polynomials of Froby on E and F coincide
in Q[T ] (using v1 and v2 to construct the embeddings Q → Qℓ,Q → Qp.

For dim(Y ) = 1 and r = rank(E), this follows from the Langlands
correspondence for GLr with ℓ-adic coefficients (Drinfeld, L. Lafforgue)
and p-adic coefficients (T. Abe). The challenge here is to apply this result
to all curves in Y , then use the result to obtain something coherent.

The analogous statement for v1, v2 away from p follows from work of
Deligne and Drinfeld. This was extended to v1 above p, v2 away from p by
Abe–Esnault and K.
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Uniformities in the construction of crystalline companions

A key geometric setup

Thanks to prior results, this can be checked after an alteration. So we may
assume E is everywhere tame and that there is a diagram

Y //

f

��

Y

f

��

Zoo

��
S

which is an elementary fibration in the sense of Artin:

S is smooth over k;

Y → S is a family of smooth projective curves;

Z → Y is a closed immersion with Z → S finite étale;

Y = Y \ Z .
We may also proceed by induction, so we may assume the existence of
companions on both fibers and multisections of f .
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Uniformities in the construction of crystalline companions

The role of uniformities

The method of Deligne to produce étale companions is to produce a
coherent sequence of mod-ℓn truncations using a finiteness/compactness
argument.

The analogous construction uses moduli stacks of (truncated) tame
isocrystals. Uniformity for crystalline lattices implies that these are finite
type over k .

Moreover, using uniformity for jumping loci on curves, we can show that
the “jumping locus” of E behaves like we expect.

We then proceed by building the successive quotients of the slope filtration
(via their associated p-adic local systems), then patch these together.
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