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Zeta functions over finite fields

The Hasse-Weil zeta function of a variety

Let X be an algebraic variety of dimension d over a finite field Fq. The
Hasse-Weil zeta function is the power series∗

Z (X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
.

It is known that:

Z (X ,T ) ∈ 1 + TZ[[T ]];

Z (X ,T ) represents a rational function in T ;

every zero or pole z of Z (X ,T ) in C satisfies |z | = q−i/2 for some
i ∈ {0, . . . , 2d};
if X is smooth proper, Z (X , q−dT−1) = T ∗q∗Z (X ,T ).

∗To make it look like more like the Riemann zeta function, take T = q−s .
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Zeta functions over finite fields

Examples

For X = Pn,

Z (X ,T ) =
1

(1− T )(1− qT ) · · · (1− qnT )
.

For X an elliptic curve,

Z (X ,T ) =
1 + aT + qT 2

(1− T )(1− qT )

where |a| ≤ 2q1/2. Note that #X (Fq) = q + 1 + a.

For X a curve of genus g ,

Z (X ,T ) =
1 + a1T + · · ·+ agT

g + qag−1T
g+1 + · · ·+ qgT 2g

(1− T )(1− qT )
.
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Zeta functions over finite fields

A word of warning

It is an important algorithmic problem to compute Z (X ,T ) from X .
However, one has to be careful in the formulation: in terms of the length
of a sparse representation of X , the problem is NP-complete because it
includes 3-SAT (taking q = 2).

For this reason, I usually take d to be fixed. This leaves me free to vary:

the cardinality q of the base field, and

the “arithmetic complexity” of X . For example, if we require X to be
an affine hypersurface, we can use the degree of the defining
polynomial. If X is a smooth projective curve, it is natural to use its
genus.
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Zeta functions over finite fields

Some classical complexity results

For simplicity, assume that X is an affine hypersurface, and take all
classical algorithms to be randomized.

Theorem (Lauder–Wan)

There is a classical algorithm to compute Z (X ,T ) from X in time
polynomial in p, degX , and logp q.

Theorem (Schoof–Pila)

For d = 1 and degX fixed, there is a classical algorithm to compute
Z (X ,T ) from X in time polynomial in log q.

Theorem (Harvey)

For fixed X of any dimension, there is a classical algorithm to compute
Z (X ,T ) from X in time polynomial in log q.
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Zeta functions over finite fields

A quantum complexity result

Theorem (K)

For d = 1, there is a quantum algorithm to compute Z (X ,T ) in time
polynomial in degX and log q.

The point is that there are some abelian groups related to Z (X ,T ): the
groups of Fqn -rational points of the Jacobian variety J(X ). If we write

Z (X ,T ) =
P(T )

(1− T )(1− qT )
, then #J(X )(Fqn) = P(1)P(ζn) · · ·P(ζn−1

n ).

We exhibit J(X ) as a black box group using divisor classes, use Shor to
compute #J(X )(Fqn) for n = 1, . . . ,O(degX ), and recover P from these.
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Zeta functions over finite fields

The role of cohomology

Most knowledge about Z (X ,T ) comes from a cohomological
interpretation arising from the Lefschetz trace formula:

Z (X ,T ) =
2d∏
i=0

det(1− TF ,H i (X ))(−1)i+1

where H i (X ) is a certain finite-dimensional vector space over some field K
of characteristic 0 and F is some linear operator (“Frobenius”) acting on
each H i (X ). The two known approaches:

étale cohomology: K = Qℓ for some prime ℓ ̸= p. In practice, we
instead use K = Fℓ for “enough” small ℓ to pin down Z (X ,T ).

crystalline cohomology and related constructions: K is a finite
extension of Qp.
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Zeta functions over finite fields

Crystalline cohomology

Crystalline cohomology groups can be defined in various ways, some of
which are intrinsically computable. For example, the interpretation in
terms of Monsky–Washnitzer cohomology is used in many practical
algorithms in PARI, Sage, Magma, etc.

However, it seems unavoidable for these constructions to incur polynomial
(at least square-root) dependence on p, unless you amortize over many
primes (Harvey, Harvey–Sutherland).

A closely related problem: given a power series over Q satisfying a fixed
ODE, compute the p-th coefficient modulo p in time polynomial in log p.
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Zeta functions over finite fields

Étale cohomology and quantum Schoof–Pila?

The étale cohomology groups H i (X ) are not defined in an intrinsically
computable way. For i = 1, one can obtain a computable model using
Jacobians; this is the basis of the quantum algorithm from earlier. It is also
the basis of Schoof–Pila, but using Fℓ-coefficients for a few small primes ℓ.

There is no analogue for i > 1, but when using Fℓ coefficients one can
relate H i (X ) to H1(Y ) for a suitable curve Y . The catch is that the
complexity of Y depends polynomially on ℓ, which breaks Schoof–Pila...

...but represents Frobenius as a “black box linear transformation” over Fℓ.
The charpoly can be found via a hidden subgroup problem (Shor–Kitaev)!

Challenge: turn this sketch into an explicit quantum algorithm to compute
Z (X ,T ) from X in time polynomial in log q and degX . The computability
of étale cohomology is a theorem of Madore–Orgogozo, but with no
complexity analysis.
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L-functions of modular forms

Modular forms

A modular form of weight k is a holomorphic function f (z) for
Real(z) > 0 satisfying (a growth condition plus) the functional equation

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for matrices

(
a b
c d

)
over Z congruent to 1 modulo N (the level).

For given N and k, the modular forms of weight k form a
finite-dimensional vector space. Since a modular form is invariant under
z 7→ z + N, it admits a Fourier expansion

f (z) =
∞∑
n=0

an/N(f )q
n/N , q = e2πiz .

Kiran S. Kedlaya (UC San Diego) Quantum complexity and L-functions Fields Inst., April 21, 2022 12 / 22



L-functions of modular forms

Fourier coefficients of modular forms

Theorem (Couveignes–Edixhoven)

Let f be a fixed modular form of weight k ≥ 2 with coefficients in some
number field. Under GRH (for Dedekind L-functions), there exists a
classical algorithm which, given a factored positive integer N, computes
the N-th Fourier coefficient of f in time polynomial in logN. (This
immediately yields a quantum algorithm for N unfactored.)

The proof is very similar to Schoof–Pila: one computes the mod-ℓ Galois
representation associated to f for O(logN) different primes ℓ.

I do not know how the complexity behaves as you vary f .
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L-functions of modular forms

Modular forms of weight 1

One can also consider modular forms of weight 1. For these one cannot
interpret the Fourier coefficients directly in terms of Galois
representations...

... but we can give such an interpretation using congruences between
modular forms, to get an efficient classical algorithm...

... or interpret the coefficients in terms of orders of class groups of
imaginary quadratic fields, to get an efficient quantum algorithm.
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L-functions of modular forms

Half-integral weight

One can also consider modular forms of half-integral weight. For
example, modular forms of weight 3/2 arise as theta series of ternary
quadratic forms.

There does not exist an interpretation of these Fourier coefficients in
terms of Galois representations. Can these nonetheless be computed
efficiently with a quantum algorithm, e.g., by expressing them as short
sums of class numbers?

As a corollary, this would give a conditional (assuming BSD, the
conjecture of Birch and Swinnerton–Dyer) quantum polynomial time
algorithm to determine whether a given positive integer N is a congruent
number, i.e., the area of a right triangle with rational side lengths.
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L-functions of modular forms

The L-function of a modular form

Given a modular form f =
∑∞

n=1 anq
n of weight k, the associated

L-function is the Dirichlet series

L(s, f ) =
∞∑
n=1

ann
−s ;

this converges absolutely for Real s > (k + 1)/2 and admits an analytic
continuation to all of C.

Much effort has been put into numerical computation of values of L(s, f ),
particularly on the axis of symmetry Real s = k/2 (Turing, ..., Booker,
Platt). This computation includes a discrete Fourier transform†; does the
use of quantum algorithms lead to any improvement?

†This is ultimately because the L-function is obtained from f by an integral
transform (the Mellin transform).
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Elliptic curves

The Mordell–Weil theorem

Theorem (Mordell for K = Q, Weil in general)

Let E be an elliptic curve over a number field K . Then E (K ) is a finitely
generated abelian group.

Warning: At present there is no known unconditional algorithm to
compute E (K ) or even its rank. Under BSD‡, one can proceed by
alternating a search for rational points (to get a lower bound on the rank)
with a computation of derivatives of the L-function (to get an upper
bound).

‡One must also assume the modularity of E , but this is known when K is a totally
real field or a CM field.
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Elliptic curves

Generators of Mordell–Weil

Let E be an elliptic curve over a number field K for which it is known that
rankE (K ) = 1 (e.g., via a known case of BSD). Can one efficiently
compute a generator of E (K ) in time polynomial in E? (This means
polynomial in log∆K and the logarithmic heights of the coefficients of E .)

In some sense this question has an information-theoretic negative answer;
it can happen that the generators of E (K ) have too many digits in their
projective coordinates. However, it may be possible to describe a compact
representation of such a generator, e.g., by using large multiples of small
points defined over a small extension field.§

§In some cases, finding this compact representation may be reducible to a hidden
subgroup problem for Zn (Kuperberg).
Kiran S. Kedlaya (UC San Diego) Quantum complexity and L-functions Fields Inst., April 21, 2022 19 / 22



Elliptic curves

An analogous problem

Let K = Q(
√
D) be a real quadratic number field. The group o×K has rank

1, generated modulo torsion by a fundamental unit; this is a solution of
the Brahmagupta–Bhāskara–Brouncker(–Pell) equation

x2 − Dy2 = ±1.

In general, log x and log y can be as large as polynomial in D, so one
cannot even write them in time polynomial in logD.

However, one can express the fundamental unit as a product

αe1
1 · · ·αen

n

where α1, . . . , αn ∈ oK are not necessarily units. In this sense, there is a
quantum algorithm to compute the fundamental unit (Hallgren), or more
generally o×K for any number field K (Schmidt–Völlmer).
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Elliptic curves

Heegner points

When E is defined over Q and has analytic rank 1 (i.e., the L-function
vanishes to order 1 at s = 1), one can generate points of E (Q) by taking
traces of CM points on modular Jacobians. This is in the spirit of a
compact representation, except that:

the dimension of the Jacobian depends on the conductor of E , which
is exponentially large;

the CM points are defined over fields whose degree is also
exponentially large.
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Elliptic curves

Alternate sources of compact representations?

Is there another way to represent the group E (K ) that might yield a
compact representation?

Motivation: Beilinson has constructed certain elements in algebraic
K -theory (namely K2(E )) which were used by Kato to prove BSD for E of
analytic rank 0. Can one do something similar when the analytic rank is 1?
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