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Determinants after Jacobi–Dodgson

A determinant identity of Desnanot–Jacobi

Take an n × n matrix with a row and column marked off along each edge:
∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
...

...
. . .

...
...

∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗


We then have

D · C = NW · SE − NE · SW

where each term is the determinant of a certain submatrix:

D of the full n × n matrix;

C of the central (n − 2)× (n − 2)-submatrix;

NW ,NE ,SW ,SE of the corner (n − 1)× (n − 1)-submatrices.
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Determinants after Jacobi–Dodgson

More on the Desnanot–Jacobi identity

There are various ways to prove the identity

D · C = NW · SE − NE · SW .

For instance, in a sufficiently generic situation, one may perform row
reduction within the central submatrix without changing any of the terms;
one thus reduces to the easy case ∗ 0 ∗

0 In−2 0

∗ 0 ∗

 .

A more modern approach would be to interpret the identity as a Plücker
relation on a Grassmannian. Hold that thought...
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Determinants after Jacobi–Dodgson

Dodgson’s condensation method

Let M be an n × n matrix over an integral domain R. Charles Dodgson1

proposed a method for computing det(M) based on the Desnanot–Jacobi
identity: compute a sequence of matrices M(1), . . . ,M(n) (which I’ll call
layers) where M(k) consists of the connected k × k minors. The identity
implies that each layer can be computed from the preceding two.

This (if it works) is an O(n3) algorithm like Gaussian elimination, but has
some intriguing benefits: it is easily parallelizable with low communication,
and all intermediate terms lie in R rather than Frac(R).

However, it doesn’t always work: in the identity

D · C = NW · SE − NE · SW

we might at some point have C = 0, in which case we cannot solve for D.

1a/k/a Lewis Carroll, of Alice in Wonderland fame.
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Condensation over a discrete valuation ring

The work of Robbins

Motivated by REDACTED, Mills, Robbins, and Rumsey began to
investigate the condensation method in the early 1980s. This led to some
remarkable connections with enumerative combinatorics, including a proof
of Macdonald’s conjecture on plane partitions, and the related
enumeration of alternating sign matrices.

Robbins was particularly interested in condensation over finite fields. This
has an obvious difficulty: zero minors are far more likely to occur than over
an infinite domain. One could try lifting, say from Fp to Z, but this
creates an undesirable coefficient explosion.

Instead, Robbins proposed lifting to a complete DVR, say from Fp to Zp.
As with R, a complete DVR is an inexact ring from the point of view of
machine computing; one must choose a scheme for computing
systematically with finite approximations (and some roundoff errors).
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Condensation over a discrete valuation ring

p-adic floating-point arithmetic

Since condensation involves division, we cannot work in a fixed quotient of
our complete DVR. Instead, we use the natural analogue of floating-point
arithmetic. For simplicity, let me describe only the case of Zp.

Each p-adic floating-point number consists of a power of p (the exponent)
times a p-adic unit reduced modulo a fixed power of p (the mantissa).
This represents a certain p-adic ball; we perform arithmetic as if this entire
ball were identified with some particular representative.

There is no loss of precision when multiplying two floating-point numbers:
whatever “true” values we have in mind, we get the correct ball around
the product. However, addition creates a loss of precision when the
valuation of x + y is greater than the (common) valuation of x and y ; one
lacks enough information to renormalize the mantissa.

At the time of Robbins, this was still largely theoretical. Nowadays, it is
implemented in Pari, Magma, Sage...
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Condensation over a discrete valuation ring

A numerical observation

If one works consistently with mantissas of m digits, the final result of a
computation will generally only be accurate to some smaller number of
digits of (relative) precision. We refer to the difference as precision loss.

Although nonarchimedean roundoff errors do not compound like as their
archimedean counterparts, one still generally observes steady degradation
of precision over the course of a computation, as the effect of individual
roundoff errors is progressively magnified.

Also, without an external precision analysis, one cannot easily detect the
precision loss from the returned output. That is, one cannot directly judge
the quality of the reported answer!

For condensation, Robbins conjectured a different behavior: the precision
loss can be bounded precisely, by the maximum valuation of any of the
computed minors. This is supported by vast numerical evidence.
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Condensation over a discrete valuation ring

A mathematical reformulation

Let’s reformulate this conjecture in more concrete terms, and generalize to
a general DVR called R (with valuation v).

Let M be an n × n matrix over R. Let M
(k)
ij denote the minor of M

consisting of rows i , . . . , i + k − 1 and columns j , . . . , j + k − 1. The
matrices M(0), . . . ,M(n) satisfy the condensation recurrence

M
(k+1)
ij M

(k−1)
(i+1)(j+1) = M

(k)
ij M

(k)
(i+1)(j+1) −M

(k)
i(j+1)M

(k)
(i+1)j .

Let M̃(0), . . . , M̃(n) be a sequence, with the same first two terms, with

M̃
(k+1)
ij M̃

(k−1)
(i+1)(j+1) = ∗M̃(k)

ij M̃
(k)
(i+1)(j+1) − ∗M̃

(k)
i(j+1)M̃

(k)
(i+1)j

where each ∗ is a (different) element of R with v(1− ∗) ≥ m.
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Condensation over a discrete valuation ring

The conjecture of Robbins, and a partial result

Conjecture (after Robbins)

We have v(M(n) − M̃(n)) ≥ m − b where b = maxi ,j ,k{v(M
(k)
ij )}.

Theorem (B-K)

We have v(M(n) − M̃(n)) ≥ m − 3b where b = maxi ,j ,k{v(M
(k)
ij )}.

In fact, this conjecture generalizes to a corresponding statement about
recurrences derived from cluster algebras, and the theorem is based on the
proof of the Laurent phenomenon for such algebras. Our methods to date
have been predominantly algebraic; it is an open question whether
geometry of tropicalizations can be exploited.
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Cluster algebras

Some combinatorial data

Fix a positive integer n. Let Γn be the Cayley graph of the free product of
n copies of Z/2Z; it is a n-regular tree with edges labeled {1, . . . , n}.

We consider a family of n × n matrices {Bv}v∈Γn called seeds, which
satisfy a relation called mutation: for any vertices v ,w which are
endpoints of an edge labeled k,

Bw ,ij =

{
−Bv ,ij if i = k or j = k

Bv ,ij + 1
2 (|Bv ,ik |Bv ,kj + Bv ,ik |Bv ,kj |) otherwise;

this family is determined by any one Bv . To make this relation symmetric,
each Bv must be sign-skew-symmetric (i.e., the matrix (sgn(Bv ,ij))i ,j is
skew-symmetric); this holds if one Bv is skew-symmetrizable (i.e.,
conjugate to a skew-symmetric matrix via a positive diagonal matrix).
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Cluster algebras

From seeds to cluster algebras

Let K be a field (for convenience; one can also handle more general base
rings and semirings). For each v ∈ Γn, form the field K (xv ,1, . . . , xv ,n). For
v ,w which are endpoints of an edge labeled k , identify K (xv ,1, . . . , xv ,n)
with K (xw ,1, . . . , xw ,n) so that the exchange relation holds:

xv ,i = xw ,i (i 6= k), xv ,kxw ,k =
∏

j 6=k:Bv,kj>0

x
Bv,kj

v ,j +
∏

j 6=k:Bv,kj<0

x
−Bv,kj

v ,j .

The cluster algebra defined by the chosen seeds is the union of the rings
K [xv ,1, . . . , xv ,n] over all v ∈ Γn.

Theorem (Fomin–Zelevinsky caterpillar lemma)

The cluster algebra is contained in K [x±v ,1, . . . , x
±
v ,n] for each v ∈ Γn. (In

general, it is strictly smaller than the intersection of these rings.)
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Cluster algebras

Floating-point errors

Let R be a DVR with valuation v . Let w0, . . . ,w` be a path in Γn.
Specialize xw0,1, . . . , xw0,n to units in R; by the caterpillar lemma,

xwi ,j ∈ R (i = 1, . . . , `; j = 1, . . . , n).

Let ki be the label of the edge from wi−1 to wi ; then

xwi−1,ki xwi ,ki =
∏

j 6=ki :Bwi−1,ki j
>0

x
Bwi−1,ki j

wi−1,j
+

∏
j 6=ki :Bwi−1,ki j

<0

x
−Bwi−1,ki j

wi−1,j
.

Define modified values x̃wi ,j so that x̃w0,j = xw0,j and

x̃wi−1,ki x̃wi ,ki = ∗
∏

j 6=ki :Bwi−1,ki j
>0

x̃
Bwi−1,ki j

wi−1,j
+ ∗

∏
j 6=ki :Bwi−1,ki j

<0

x̃
−Bwi−1,ki j

wi−1,j
.

where each ∗ is a (different) element of R with v(1− ∗) ≥ m.
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Cluster algebras

The Robbins phenomenon

Conjecture

For all j , v(xw`,j − x̃w`,j) ≥ m − b where b = maxi ,j{v(xwi ,j)}.

This has been tested in many cases, including with random seeds.

Theorem (B-K)

For all j , v(xw`,j − x̃w`,j) ≥ m − cb where b = maxi ,j{v(xwi ,j)} and c is a
positive integer depending only on the seeds and the path.

More precisely, we may replace cb with the maximum of

v(xwi−1,ki ) +
∑

j 6=ki :sgn(Bwi−1,ki j
=ε)

v(xwi−1,j)

over i ∈ {1, . . . , n} and ε ∈ {±1}. (That is, take the moving variable plus
all of the variables appearing in one of the two monomials.)
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Examples

Condensation as a cluster algebra

The importance of cluster algebras is that they incorporate many
preexisting examples from disparate contexts, thus inducing people who
previously had no shared interests to communicate!

For example, the homogeneous coordinate ring of a Grassmannian can be
interpreted as a cluster algebra, with the exchange relations reproducing
Plücker relations. This example gives rise to condensation: one has a path
where, at certain steps along the way, the cluster variables correspond to
all of the minors in two consecutive labels.

Besides this example, our typical examples are not the most common from
other points of view (e.g., triangulations of surfaces). We prefer examples
which correspond to simple algebraic recurrences, as these are easy to test.
(That said, we have done some numerical experiments involving random
skew-symmetrizable seeds and random walks on Γn.)
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Examples

Example: the Somos-4 recurrence

Let x0, . . . , x3 be units in R. Define x4, . . . , x` by the recurrence

xixi−4 = xi−1xi−3 + x2
i−2.

As usual, let x̃i be a modified recurrence with the same initial terms. Then

v(x` − x̃`) ≥ m −max
i
{v(xi−4) + max{v(xi−1) + v(xi−3), v(xi−2)}}.

However, it is easy to show by induction on i that at most one of
xi−4, xi−3, xi−2, xi−1 is not a unit in R. So we actually deduce the full
Robbins conjecture in this case. (See Caruso–Roe–Vaccon for another
proof using differential precision analysis.)
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Examples

Not an example: the Somos-6 recurrence

Let x0, . . . , x5 be units in R. Define x6, . . . , x` by the recurrence

xixi−6 = xi−1xi−5 + xi−2xi−4 + x2
i−3.

This is not a cluster example (since the recurrence is trinomial rather than
binomial), but still exhibits the Laurent phenomenon; in particular, x` ∈ R.

As usual, let x̃i be a modified recurrence with the same initial terms. Then

v(x` − x̃`) ≥ m − c max
i
{v(xi )}

where we can prove c = 5, and examples suggest that c = 2 is best
possible. We have counterexamples against the inequality for c = 1.

Lam–Pylyavskyy have defined LP algebras by analogy with cluster
algebras. Our theorem adapts to these, but it is unclear how to formulate
a conjecture that optimizes c .
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Examples

Example: Somos-6 with no middle term

Let x0, . . . , x5 be units in R. Define x6, . . . , x` by the recurrence

xixi−6 = xi−1xi−5 + xi−2xi−4.

As usual, let x̃i be a modified recurrence with the same initial terms. Then

v(x`−x̃`) ≥ m−max
i
{v(xi−6)+max{v(xi−1)+v(xi−5), v(xi−2)+v(xi−4)}}.

This is again a cluster recurrence, so in the bound

v(x` − x̃`) ≥ m − c max
i
{v(xi )}

we expect to achieve c = 1; however, the argument for Somos-4 does not
carry over. But maybe some more sophisticated argument about the
valuations in a slightly longer subsequence would help?
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Algebraic conjectures and results

Introducing extra variables

One can formulate a stronger conjecture, and establish some partial
results, which does not depend on a discrete valuation. In this setup, each
error term ∗ is replaced by 1 + ε where ε is a (suitably labeled) polynomial
variable. For instance, in the cluster recurrence

x̃wi−1,ki x̃wi ,ki = ∗
∏

j 6=ki :Bwi−1,ki j
>0

x̃
Bwi−1,ki j

wi−1,j
+ ∗

∏
j 6=ki :Bwi−1,ki j

<0

x̃
−Bwi−1,ki j

wi−1,j
.

we may replace the two ∗ terms by 1 + εi ,+ and 1 + εi ,−.

The Laurent phenomenon will now fail: it is not the case that

x̃w`,j ∈ R[x̃±w0,i
][εi ,±].

However, we can prove that this holds if we adjoin not εi ,+, εi ,− but

εi ,+
x̃wi−1,k

∏
j 6=ki :Bwi ,ki j

<0 xwi−1,j
,

εi ,−
x̃wi−1,k

∏
j 6=ki :Bwi ,ki j

>0 xwi−1,j

(modulo a suitable localization, or use power series variables instead).
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Algebraic conjectures and results

An algebraic Robbins conjecture

In the previous notation, we conjecture more: instead of adjoining εi ,+
divided by a product of variables, it suffices to adjoin εi ,+ divided by each
variable individually. This would then explain the constant c = 1 in the
Robbins conjecture.

We have limited direct evidence for this stronger conjecture. For one, our
experiments cannot distinguish between this statement and the weaker one
where we replace the containing ring with its integral closure.

One case we do know: for Somos-4, among four consecutive terms, any
two generate the unit ideal in R. From this, it follows easily that the
conjecture is equivalent to the previous theorem. (The method of
Caruso–Roe–Vaccon does not promote to this context.)
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Algebraic conjectures and results

A first-order result

Our last evidence for the Robbins phenomenon is the following statement.

Theorem (B-P, in progress)

The algebraic Robbins conjecture for cluster algebras (previous slide) holds
to first order, i.e., modulo the ideal generated by any product of two ε
factors with arbitrary denominator.

This in particular implies that the original Robbins conjecture holds when
the working precision m is sufficiently large relative to the valuations of the
terms in the sequence.

It may be possible to use similar methods to establish higher-order
statements, and thus obtain the algebraic Robbins conjecture in the power
series formulation.
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