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Introduction: some context

Shtukas and geometric Langlands

Let 𝑋 be a curve over 𝔽𝑝. To prove the Langlands correspondence for
GL(2) over 𝑘(𝑋), Drinfeld considered moduli spaces of shtukas as
geometric analogues of modular curves/Shimura varieties.
For 𝑆 an 𝔽𝑝-scheme, a 𝑆-shtuka on 𝑋 is (roughly) a vector bundle on
𝑋 ×𝔽𝑝

𝑆 equipped with a rational map from this bundle to its 𝜑𝑆-pullback
(where 𝜑𝑆 denotes absolute Frobenius on 𝑆, fixing 𝑋).
The moduli space of shtukas admits Hecke correspondences
corresponding to points of 𝑋, coming from modifying a shtuka along a
point of 𝑋 (by rescaling the rational map).
A similar construction was used by L. Lafforgue to extend Drinfeld’s work
to GL(𝑛). This made heavy use of automorphic trace formulas.
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Introduction: some context

Geometric Langlands via excursion operators

Recently, V. Lafforgue gave a more geometric, less trace-theoretic version
of Drinfeld’s method that can handle general reductive groups, building on
the geometric Satake equivalence of Mirković–Vilonen.
At a key stage (the construction of excursion operators), this depends on
an old idea of Drinfeld: the relationship between 𝑋 and the formal
quotient (𝑋 ×𝔽𝑝

𝑘)/𝜑𝑘, where 𝑘 is an algebraically closed field.

This relationship (“Drinfeld’s lemma”) takes a variety of forms. In its
original form, it expresses a comparison of (profinite) étale fundamental
groups and of lisse/constructible ℓ-adic sheaves for any prime ℓ ≠ 𝑝.
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Introduction: some context

Variants of Drinfeld’s lemma

In this talk, we focus on the situation where ℓ = 𝑝. That is, we trade étale
cohomology for Berthelot’s rigid cohomology, in which the analogue of
lisse sheaves are overconvergent 𝐹 -isocrystals. The analogue of
constructible sheaves are arithmetic 𝒟-modules, but these will mostly
lurk in the background.
Aside: there is another form of Drinfeld’s lemma involving perfectoid
spaces. Ongoing work of Fargues–Scholze applies this to the local
Langlands correspondence in mixed characteristic (0, 𝑝), again with ℓ-adic
coefficients for ℓ ≠ 𝑝. Work of Carter–KSK–Zábrádi on multivariate
(𝜑, Γ)-modules suggests a link with the ℓ = 𝑝 case à la Colmez’s 𝑝-adic
Langlands for GL2(ℚ𝑝).
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Drinfeld’s lemma for schemes

Setup: a formal quotient by Frobenius

Throughout this section...
𝑋 = a scheme over 𝔽𝑝
𝑘 = an algebraically closed field of characteristic 𝑝
𝑋𝑘 = 𝑋 ×𝔽𝑝

𝑘
𝜑𝑘 = the pullback to 𝑋𝑘 of the absolute Frobenius on Spec 𝑘
We will consider “𝑋𝑘/𝜑𝑘” as a formal quotient: an object of some type
over 𝑋𝑘/𝜑𝑘 is an object of the same type over 𝑋𝑘 equipped with an
isomorphism with its 𝜑𝑘-pullback.
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Drinfeld’s lemma for schemes

Coherent sheaves: the original Drinfeld’s Lemma

Theorem (Drinfeld, Lau)
For 𝑋/𝔽𝑝 (finite type and) projective, the base extension functor

(coherent sheaves on 𝑋) → (coherent sheaves on 𝑋𝑘/𝜑𝑘)

is an equivalence of categories and preserves cohomology. (In the latter
case, this means the hypercohomology of the complex ℰ

𝜑𝑘−1
→ ℰ.)

When 𝑋 = Spec 𝔽𝑝, this says that a finite-dimensional 𝑘-vector space with
a semilinear (bijective) 𝜑𝑘-action has a fixed basis. This is nonabelian
Artin–Schreier, a/k/a Katz–Lang (see SGA 7, XXII).
The general case follows using the fact that a coherent sheaf ℰ on 𝑋
(resp. 𝑋𝑘) can be recovered from its spaces of sections 𝐻0(𝑋, ℰ(𝑛))
(resp. 𝐻0(𝑋𝑘, ℰ(𝑛))) for 𝑛 ≫ 0.
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Drinfeld’s lemma for schemes

Finite étale covers

Let FEt(𝑋) be the category of finite étale schemes over 𝑋.

Corollary
The base extension functor FEt(𝑋) → FEt(𝑋𝑘/𝜑𝑘) is an equivalence.

This formally reduces to the case where 𝑋 is affine and of finite type over
𝔽𝑝. In this case, one can choose a projective compactification 𝑌 of 𝑋; any
object of FEt(𝑋𝑘/𝜑𝑘) extends to a finite normal cover of 𝑌𝑘/𝜑𝑘, which
by the theorem comes from some finite cover of 𝑌 .
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Drinfeld’s lemma for schemes

Profinite fundamental groups and lisse sheaves

Corollary
For 𝑋 connected, 𝑋𝑘/𝜑𝑘 is connected and for any geometric point
𝑥 → 𝑋𝑘, 𝜋prof

1 (𝑋𝑘/𝜑𝑘, 𝑥) ≅ 𝜋prof
1 (𝑋, 𝑥).

Warning: in general 𝜋0(𝑋𝑘) ≠ 𝜋0(𝑋). For example, if 𝑋 = Spec ℓ is a
geometric point, 𝜋0(𝑋𝑘) ≅ ℤ̂ indexed by identifications of the copies of 𝔽𝑝
in 𝑘 and ℓ; but 𝜑𝑘 acts on 𝜋0(𝑋𝑘) by translation by ℤ.

Corollary
For ℓ ≠ 𝑝 prime, the pullback functor

{lisse ℚℓ-sheaves on 𝑋} → {lisse ℚℓ-sheaves on 𝑋𝑘/𝜑𝑘}

is an equivalence of categories and preserves cohomology.
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Drinfeld’s lemma for schemes

Open subschemes and étale sheaves

Corollary
The quasicompact open subschemes of 𝑋𝑘/𝜑𝑘 are exactly the pullbacks of
the quasicompact open subschemes of 𝑋.

Quasicompactness lets us reduce to the case where 𝑋 is affine and of
finite type over 𝔽𝑝. In this case, choose a projective compactification 𝑌 ;
given an open subscheme 𝑈 of 𝑋𝑘 invariant under 𝜑𝑘, apply the theorem
to the ideal sheaf on 𝑌𝑘 defining the reduced complement of 𝑈 .

Corollary
For 𝑋 of finite type over 𝔽𝑝 and ℓ ≠ 𝑝 prime, the pullback functor

{constructible ℚℓ-sheaves on 𝑋} → {constructible ℚℓ-sheaves on 𝑋𝑘/𝜑𝑘}

is an equivalence of categories and preserves cohomology.
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Drinfeld’s lemma for schemes

Products of two (or more) fundamental groups

Corollary
For 𝑋1, 𝑋2 two connected 𝔽𝑝-schemes, one of which is qcqs, put
𝑋 = 𝑋1 ×𝔽𝑝

𝑋2 and let 𝜑1, 𝜑2 ∶ 𝑋 → 𝑋 be the partial Frobenius maps.
Then 𝑋/𝜑2 is connected, and for any geometric point 𝑥 → 𝑋,

𝜋prof
1 (𝑋/𝜑2, 𝑥) ≅ 𝜋prof

1 (𝑋1, 𝑥) × 𝜋prof
2 (𝑋2, 𝑥).

This follows from the case where 𝑋2 is a geometric point using the
homotopy exact sequence for a fibration (SGA 1, X).
A similar conclusion holds for 𝑛 schemes, all but one of which are qcqs.
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1 (𝑋1, 𝑥) × 𝜋prof
2 (𝑋2, 𝑥).

This follows from the case where 𝑋2 is a geometric point using the
homotopy exact sequence for a fibration (SGA 1, X).
A similar conclusion holds for 𝑛 schemes, all but one of which are qcqs.
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Convergent 𝐹 -isocrystals

Convergent 𝐹 -isocrystals

Although we eventually want to consider overconvergent 𝐹 -isocrystals,
we need to start with a slightly simpler definition.
Let 𝑋 be a smooth affine scheme over a perfect field 𝑘 of characteristic 𝑝.
Fix a formal scheme 𝑃 smooth over 𝑊(𝑘) with 𝑃𝑘 ≅ 𝑋 and a lift 𝜎 of 𝜑𝑋
to 𝑃 .
A convergent 𝐹 -isocrystal on 𝑋 is a finite projective module over
Γ(𝑃 , 𝒪)[𝑝−1] equipped with an integrable 𝑊(𝑘)[𝑝−1]-linear connection and
a horizontal isomorphism with its 𝜎-pullback.
The resulting ℚ𝑝-linear tensor category F-Isoc(𝑋) does not depend† on 𝑃
or 𝜎, and extends by glueing to general smooth 𝑋. The 𝜎-action then
coincides with the functorial 𝜑𝑋-action.

†This follows by comparison with Ogus’s site-theoretic definition.
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Convergent 𝐹 -isocrystals

Newton polygons

For ℰ ∈ F-Isoc(𝑋) and 𝑥 → 𝑋 a geometric point lying over 𝑥 ∈ 𝑋, we
may pull back ℰ to F-Isoc(𝑥) and apply the Dieudonné–Manin
classification: that pullback decomposes as ⨁𝑑∈ℚ ℰ𝑑 where for 𝑑 = 𝑟

𝑠 ∈ ℚ
in lowest terms, ℰ𝑑 admits a basis killed by 𝜑𝑠

𝑋 − 𝑝𝑟.
Make the (convex) Newton polygon having slope 𝑑 with multiplicity
rank ℰ𝑑 for all 𝑑; this depends only on 𝑥, not on 𝑥, and is denoted
NP(ℰ, 𝑥).
Theorem (Grothendieck–Katz)
The Newton polygon function NP(ℰ, •) on |𝑋| is upper semicontinuous.

For example, the middle cohomology of the universal elliptic curve over a
modular curve has generic Newton slopes 0, 1 (ordinary), but at isolated
points it jumps to 1

2 , 1
2 (supersingular).
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Convergent 𝐹 -isocrystals

Slope filtrations

Theorem (Katz)
If NP(ℰ, •) is constant on |𝑋|, then ℰ admits a filtration

0 = ℰ0 ⊂ ⋯ ⊂ ℰ𝑙 = ℰ

in which ℰ𝑖/ℰ𝑖−1 has all Newton slopes equal to 𝜇𝑖, and 𝜇1 < ⋯ < 𝜇𝑙.

We say that ℰ is unit-root (or étale) if NP(ℰ, •) is constant on |𝑋| with
all slopes equal to 0.

Theorem (Katz, Crew)
The functor ℰ ↦ ℰ𝜑𝑋 defines an equivalence between the (full) category of
unit-root objects of F-Isoc(𝑋) and the category of lisse ℚ𝑝-sheaves on 𝑋.
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Convergent 𝐹 -isocrystals

The structure of convergent 𝐹 -isocrystals

Given ℰ ∈ F-Isoc(𝑋), there exists an open dense subscheme 𝑈 of ℰ on
which NP(ℰ, •) is constant. We then obtain a slope filtration in
F-Isoc(𝑈). Each successive quotient is, up to a twist‡, associated to some
lisse ℚ𝑝-sheaf. However, the extensions between these pieces do not come
from lisse sheaves, and so require some analysis directly in F-Isoc(𝑈).
For example, suppose that there are two distinct slopes, so that we have
an exact sequence

0 → ℰ1 → ℰ → ℰ2 → 0.
The extension class belongs to 𝐻1 of the object ℰ∨

2 ⊗ ℰ1, which is not
unit-root.

‡This twist might be fractional, in which case we must either replace 𝜑𝑋 with a
power or extend coefficients from ℚ𝑝 to a ramified extension.
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Drinfeld’s lemma for convergent 𝐹 -isocrystals

Convergent Φ-isocrystals

For 𝑖 = 1, 2, let 𝑋𝑖 be a smooth affine scheme over a perfect field 𝑘𝑖 of
characteristic 𝑝. Fix a formal scheme 𝑃𝑖 smooth over 𝑊(𝑘𝑖) with
(𝑃𝑖)𝑘𝑖

≅ 𝑋𝑖 and a lift 𝜎𝑖 of 𝜑𝑋𝑖
to 𝑃𝑖.

A convergent Φ-isocrystal on 𝑋 = 𝑋1 ×𝔽𝑝
𝑋2 is a finite projective

module over Γ(𝑃1 ×ℤ𝑝
𝑃2, 𝒪)[𝑝−1] equipped with an integrable

𝑊(𝑘1 ⊗𝔽𝑝
𝑘2)[𝑝−1]-linear connection and commuting horizontal

isomorphisms with its 𝜎𝑖-pullbacks. Let Φ Isoc(𝑋) be the resulting
category; again, this is functorially independent of any choices.
We may make a similar definition for an 𝑛-fold product for 𝑛 > 2.
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Drinfeld’s lemma for convergent 𝐹 -isocrystals

Pullback

There is a natural pullback functor from F-Isoc(𝑋1) to Φ Isoc(𝑋). When
𝑋2 is a geometric point, this admits the one-sided inverse

ℰ ∈ Φ Isoc(𝑋) ↦ ℰ𝜑2 ∈ F-Isoc(𝑋1)

but is not an equivalence (see below).
However, for ℰ as above, the sequence

0 → ℰ𝜑2 → ℰ
𝜑2−1
→ ℰ → 0

is exact. This implies...

Lemma
For 𝑋2 a geometric point, pullback from F-Isoc(𝑋1) to Φ Isoc(𝑋)
preserves cohomology.

Kiran S. Kedlaya Drinfeld’s lemma for 𝐹 -isocrystals London, December 7–11, 2020 20 / 32



Drinfeld’s lemma for convergent 𝐹 -isocrystals

Pullback

There is a natural pullback functor from F-Isoc(𝑋1) to Φ Isoc(𝑋). When
𝑋2 is a geometric point, this admits the one-sided inverse

ℰ ∈ Φ Isoc(𝑋) ↦ ℰ𝜑2 ∈ F-Isoc(𝑋1)

but is not an equivalence (see below).
However, for ℰ as above, the sequence

0 → ℰ𝜑2 → ℰ
𝜑2−1
→ ℰ → 0

is exact. This implies...

Lemma
For 𝑋2 a geometric point, pullback from F-Isoc(𝑋1) to Φ Isoc(𝑋)
preserves cohomology.

Kiran S. Kedlaya Drinfeld’s lemma for 𝐹 -isocrystals London, December 7–11, 2020 20 / 32



Drinfeld’s lemma for convergent 𝐹 -isocrystals

Pullback

There is a natural pullback functor from F-Isoc(𝑋1) to Φ Isoc(𝑋). When
𝑋2 is a geometric point, this admits the one-sided inverse

ℰ ∈ Φ Isoc(𝑋) ↦ ℰ𝜑2 ∈ F-Isoc(𝑋1)

but is not an equivalence (see below).
However, for ℰ as above, the sequence

0 → ℰ𝜑2 → ℰ
𝜑2−1
→ ℰ → 0

is exact. This implies...

Lemma
For 𝑋2 a geometric point, pullback from F-Isoc(𝑋1) to Φ Isoc(𝑋)
preserves cohomology.

Kiran S. Kedlaya Drinfeld’s lemma for 𝐹 -isocrystals London, December 7–11, 2020 20 / 32



Drinfeld’s lemma for convergent 𝐹 -isocrystals

Total Newton polygons

If 𝑘1 = 𝔽𝑝, then 𝑋 is itself smooth over 𝑘2, and an object of Φ Isoc(𝑋) is
just an object of F-Isoc(𝑋) equipped with an isomorphism with its
𝜑2-pullback.
In fact, one can define F-Isoc(𝑋) so that this remains true for arbitrary
𝑘1, 𝑘2. We then have a functor from Φ Isoc(𝑋) to F-Isoc(𝑋) that keeps
the action of 𝜑 = 𝜑1 ∘ 𝜑2.

Theorem
Suppose that 𝑋2 is a geometric point. For ℰ ∈ Φ Isoc(𝑋), the total
Newton polygon of ℰ (i.e., the Newton polygon of the image object in
F-Isoc(𝑋)), as a function on |𝑋|, factors through |𝑋1|.

Idea of proof: apply Drinfeld’s lemma to the stratification from
Grothendieck–Katz.
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the action of 𝜑 = 𝜑1 ∘ 𝜑2.

Theorem
Suppose that 𝑋2 is a geometric point. For ℰ ∈ Φ Isoc(𝑋), the total
Newton polygon of ℰ (i.e., the Newton polygon of the image object in
F-Isoc(𝑋)), as a function on |𝑋|, factors through |𝑋1|.

Idea of proof: apply Drinfeld’s lemma to the stratification from
Grothendieck–Katz.
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Drinfeld’s lemma for convergent 𝐹 -isocrystals

Relative Dieudonné–Manin

Theorem
Suppose that 𝑋2 is a geometric point. Then any ℰ ∈ Φ Isoc(𝑋)
decomposes as ⨁𝑑∈ℚ ℰ𝑑 where for 𝑑 = 𝑟

𝑠 ∈ ℚ in lowest terms,
ℰ𝜑𝑠

2−𝑝𝑟

𝑑 ∈ F-Isoc(𝑋1). In particular, ℰ is a pullback from F-Isoc(𝑋1) iff
ℰ = ℰ0.

Idea of proof: first do the case where the total Newton polygon is
constant, by treating the steps of the slope filtration using lisse sheaves
and then applying preservation of cohomology. Then use:

Theorem (after de Jong, KSK)
For 𝑈𝑖 ⊆ 𝑋𝑖 open dense and 𝑈 = 𝑈1 ×𝔽𝑝

𝑈2, Φ Isoc(𝑋) → Φ Isoc(𝑈) is
fully faithful.
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Drinfeld’s lemma for convergent 𝐹 -isocrystals

Products of two (or more) schemes

Theorem (not just a corollary!)
Any irreducible ℰ ∈ Φ Isoc(𝑋) is a subobject of the form ℰ1 ⊠ ℰ2 for
some ℰ𝑖 ∈ F-Isoc(𝑋𝑖).

Again, we first do the case where the total Newton polygon is constant,
then use the full faithfulness of restriction.
When 𝑘1 = 𝑘2 = 𝔽𝑝, this can be reformulated as an analogue of the
isomorphism

𝜋prof
1 (𝑋/𝜑2, 𝑥) ≅ 𝜋prof

1 (𝑋1, 𝑥) × 𝜋prof
2 (𝑋2, 𝑥)

in terms of Tannakian fundamental groups (Daxin Xu).
A similar statement holds for 𝑛-fold products for 𝑛 > 2.
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Drinfeld’s lemma for overconvergent 𝐹 -isocrystals
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Drinfeld’s lemma for overconvergent 𝐹 -isocrystals

Overconvergent 𝐹 -isocrystals
Convergent 𝐹 -isocrystals are not the “correct” 𝑝-adic analogue of lisse
sheaves because their cohomology (of the underlying isocrystal without
Frobenius) is not finite-dimensional.
This can be fixed by considering overconvergent 𝐹 -isocrystals. For 𝑋
smooth over a perfect field 𝑘, the category F-Isoc†(𝑋) can be described
by modifying the construction of F-Isoc(𝑋) replacing the formal scheme
𝑃 with a weak formal scheme. For instance, if 𝑋 = 𝔸𝑛

𝑘 , then instead of
the formal scheme 𝑃 = �̂�𝑛

𝑊(𝑘) with

Γ(𝑃 , 𝒪) = 𝑊(𝑘)⟨𝑇1, … , 𝑇𝑛⟩
(power series convergent on the closed unit disc), we take the weak formal
scheme 𝑃 † with

Γ(𝑃 †, 𝒪) = 𝑊(𝑘)⟨𝑇1, … , 𝑇𝑛⟩† = lim−→𝑟>1
𝑊(𝑘)⟨𝑇1/𝑟, … , 𝑇𝑛/𝑟⟩†

(power series convergent on some closed polydisc with radii > 1).
Kiran S. Kedlaya Drinfeld’s lemma for 𝐹 -isocrystals London, December 7–11, 2020 25 / 32



Drinfeld’s lemma for overconvergent 𝐹 -isocrystals

Overconvergent 𝐹 -isocrystals
Convergent 𝐹 -isocrystals are not the “correct” 𝑝-adic analogue of lisse
sheaves because their cohomology (of the underlying isocrystal without
Frobenius) is not finite-dimensional.
This can be fixed by considering overconvergent 𝐹 -isocrystals. For 𝑋
smooth over a perfect field 𝑘, the category F-Isoc†(𝑋) can be described
by modifying the construction of F-Isoc(𝑋) replacing the formal scheme
𝑃 with a weak formal scheme. For instance, if 𝑋 = 𝔸𝑛

𝑘 , then instead of
the formal scheme 𝑃 = �̂�𝑛

𝑊(𝑘) with

Γ(𝑃 , 𝒪) = 𝑊(𝑘)⟨𝑇1, … , 𝑇𝑛⟩
(power series convergent on the closed unit disc), we take the weak formal
scheme 𝑃 † with

Γ(𝑃 †, 𝒪) = 𝑊(𝑘)⟨𝑇1, … , 𝑇𝑛⟩† = lim−→𝑟>1
𝑊(𝑘)⟨𝑇1/𝑟, … , 𝑇𝑛/𝑟⟩†

(power series convergent on some closed polydisc with radii > 1).
Kiran S. Kedlaya Drinfeld’s lemma for 𝐹 -isocrystals London, December 7–11, 2020 25 / 32



Drinfeld’s lemma for overconvergent 𝐹 -isocrystals

Overconvergent Φ-isocrystals

For 𝑋 = 𝑋1 ×𝔽𝑝
𝑋2 with 𝑋𝑖 smooth over a perfect field 𝑘𝑖, we may

similarly modify the definition of Φ Isoc(𝑋) to obtain a category
Φ Isoc†(𝑋) of overconvergent Φ-isocrystals.

Theorem (after de Jong, KSK)

The functor Φ Isoc†(𝑋) → Φ Isoc(𝑋) is fully faithful.

Warning: this does not imply that subobjects lift from Φ Isoc(𝑋) to
Φ Isoc†(𝑋). In particular, even if an object of Φ Isoc†(𝑋) has constant
total Newton polygon, it does not typically admit a slope filtration.
We may make a similar definition for an 𝑛-fold product for 𝑛 > 2.
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Drinfeld’s lemma for overconvergent 𝐹 -isocrystals

Convergent to overconvergent

Using the full faithfulness of restriction, we obtain the following results by
easy reductions to their convergent analogues.

Theorem
Suppose that 𝑋2 is a geometric point. Then any ℰ ∈ Φ Isoc†(𝑋)
decomposes as ⨁𝑑∈ℚ ℰ𝑑 where for 𝑑 = 𝑟

𝑠 ∈ ℚ in lowest terms,
ℰ𝜑𝑠

2−𝑝𝑟

𝑑 ∈ F-Isoc†(𝑋1). In particular, ℰ is a pullback from F-Isoc†(𝑋) iff
ℰ = ℰ0.

Theorem
Any irreducible ℰ ∈ Φ Isoc†(𝑋) is a subobject of the form ℰ1 ⊠ ℰ2 for
some ℰ𝑖 ∈ F-Isoc†(𝑋𝑖).
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Footnotes
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Footnotes

Beyond the smooth case

The previous results included some smoothness restrictions. One can
formally promote these theorems with “smooth” replaced by “locally of
finite type” using de Jong’s theorem to construct simplicial resolutions.
The same logic allows promotion from schemes to stacks. This is
important for the application to the Langlands correspondence because
moduli spaces of shtukas are generally not schemes.
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Footnotes

Arithmetic 𝒟-modules

A 𝑝-adic analogue of constructible ℓ-sheaves is used by T. Abe to adapt L.
Lafforgue’s proof of the Langlands correspondence for GL(𝑛) to 𝑝-adic
coefficients.
Given such a “sheaf” on 𝑋𝑘 = 𝑋 ×𝔽𝑝

𝑘 where 𝑋 is a scheme (or an
algebraic stack) of finite type over 𝔽𝑝, there is a maximal open dense
subspace 𝑈𝑘 on which this object restricts to an overconvergent
𝐹 -isocrystal. If we start with an object on 𝑋𝑘/𝜑𝑘, then (by Drinfeld’s
lemma) 𝑈𝑘 is the base extension of an open subspace 𝑈 of 𝑋.
Is this enough to adapt V. Lafforgue’s construction to 𝑝-adic coefficients?
Time will tell...
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Footnotes

Isocrystals without Frobenius structure

One can also consider convergent and overconvergent isocrystals without
Frobenius structure (although the definition is a bit different).
For 𝑋 = 𝑋1 ×𝔽𝑝

𝑋2, are there similar results relating isocrystals on 𝑋1
and 𝑋2 to isocrystals on 𝑋 equipped with a partial Frobenius action? Our
techniques cannot touch this question (even when 𝑋2 is a geometric
point).
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Footnotes

Further reading (with links)

Anne T. Carter, KSK, and Gergely Zábrádi, Drinfeld’s lemma for perfectoid
spaces and overconvergence of multivariate (𝜑, Γ)-modules, arXiv.
KSK, Sheaves, stacks, and shtukas, Arizona Winter School 2017 lectures.
KSK, Notes on isocrystals, arXiv.
KSK, Étale and crystalline companions, I (arxiv), II (arXiv).
KSK, Several forms of Drinfeld’s lemma, RAMpAGe seminar talk.
Eike Lau, On generalised 𝒟-shtukas, PhD thesis (Bonn, 2004).
Peter Scholze and Jared Weinstein, Berkeley Lectures on 𝑝-adic Geometry.
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http://arxiv.org/abs/1808.03964
https://kskedlaya.org/papers/aws-notes.pdf
http://arxiv.org/abs/1606.01321
http://arxiv.org/abs/1811.00204
https://arxiv.org/abs/2008.13053
http://math.bu.edu/people/jsweinst/rampage/
https://bib.math.uni-bonn.de/downloads/bms/BMS-369.pdf
https://www.math.uni-bonn.de/people/scholze/Berkeley.pdf
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