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Coleman’s theory of p-adic path integrals

Let X be a curve over Qp with good reduction (for simplicity).

Coleman (1985) gave a definition of the path integral
∫ Q
P ω ∈ Cp where ω

is a holomorphic differential on X and P,Q ∈ X (Cp). (More generally, ω
need only be defined on a generally on a wide open subspace U of the
associated rigid analytic space, provided that P,Q ∈ U(Cp).)

Among its other uses, Coleman integration plays an important role in
effective methods in arithmetic geometry.

Torsion points (effective Manin-Mumford conjecture).

Rational points on curves via Chabauty-Coleman method.

Kim’s nonabelian Chabauty method (specialized to quadratic
Chabauty).

In this talk, we (mostly) ignore applications and focus on the problem of
numerically computing Coleman integrals.
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Jacobian arithmetic

The oldest approach to computing Coleman integrals (Wetherell, 1998)
used:

linearity in the endpoints;

compatibility with the naive definition on a residue disc.

To compute
∫
D ω for D ∈ Pic0(X ), find a positive integer n such that nD

projects to zero in the Jacobian of X over Fp. One can then write nD in
terms of points in a single residue disc, and then compute∫
D ω = n−1

∫
nD ω by direct integration of power series. (We refer to

integrals computed by direct integration in a disc as “tiny integrals”.)

Applying this method in practice depends on Jacobian arithmetic. This is
sometimes impractical.
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Frobenius lifts on wide open subspaces

A subsequent approach (Balakrishnan-Bradshaw-K, 2008) used:

direct computation of tiny integrals;

change of variables for a Frobenius lift ϕ on a wide open subspace.

Say ω is a differential form whose class in Monsky-Washnitzer cohomology
is a Frobenius eigenvector with eigenvalue λ; by change of variables,

λ

∫ Q

P
ω =

∫ Q

P
ϕ∗ω + f (Q)− f (P) =

∫ ϕ(Q)

ϕ(P)
ω + f (Q)− f (P)

where f is an antiderivative of (ϕ∗ − λ)ω. Now∫ Q

P
ω = (λ− 1)−1

(
f (Q)− f (P) +

∫ ϕ(P)

P
ω +

∫ Q

ϕ(Q)
ω

)
where λ− 1 6= 0 by weights (i.e., Weil’s proof of RH for curves).

This depends on computing in MW cohomology, and thus on explicit
equations. This is sometimes impractical.
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Hecke correspondences on modular curves

We now focus on modular curves. The problem of (provably) finding all
rational points on such a curve is of special interest; for example, Mazur’s
theorem on torsion points on elliptic curves amounts to finding X0(N)(Q)
for all N (namely, only cusps unless the genus is 0).

Unfortunately, explicit equations for modular curves are often very messy,
because these curves are “probably (almost) Brill-Noether general”. (E.g.,
they are known to have large gonality.)

Let X be a modular curve (e.g., X0(N)). For each prime ` not dividing N,
adding ` to the level gives rise to a new modular curve X ′ admitting two
projections π1, π2 : X ′ → X of degree `+ 1.

We may use X ′ to define the Hecke correspondence T`. It acts both on
divisors and on differential forms via the same formula:

D 7→ π2∗π
∗
1D.
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Coleman integrals of eigenforms

Suppose now that ω is a Hecke eigenform. Then for any divisor D,

ap

∫
D
ω =

∫
T∗
p (D)

ω

where ap denotes the eigenvalue of Tp on ω. We can rewrite as

(p + 1− ap)

∫
D
ω =

∫
(p+1)D−T∗

p (D)
ω.

For each closed point P in D, (p + 1)P and T ∗p (P) each consist of p + 1
points in the same residue disc. We can thus compute the right side via
tiny integrals; since p + 1− ap 6= 0 (the Ramanujan bound implies
|ap| ≤ 2

√
p), we can solve for

∫
D ω.
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Avoidance of models

It remains to compute tiny integrals of a Hecke eigenform. If one has
access to a model of the curve, one can expand in power series that way.

However, it is not always convenient to compute a model of the curve.
Another possible approach is to produce the series expansion over C using
the uniformization by the upper half-plane. The series has coefficients in
the eigenvalue field of ω, which is a number field; one can also control the
height and denominators of the coefficients. So a sufficiently good complex
floating-point approximation (with rigorous error terms) will suffice.

So far we have tested this in some low-genus examples (e.g., X0(37)) by
comparing with the model-based method. Asymptotic performance
remains to be assessed.
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Coming attractions: iterated integrals

Coleman’s theory also produces iterated integrals like
∫ Q
P ω1(∗)

∫ ∗
P ω2.

These appear in Kim’s nonabelian Chabauty method.

These can again be computed using pullback by Frobenius
(Balakrishnan-Tuitman). However, we no longer have linearity in the
endpoints, so it is not immediately clear how to promote this to
correspondences. Work on this is ongoing.
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