# The relative class number one problem for function fields, III 

Kiran S. Kedlaya

Department of Mathematics, University of California San Diego kedlaya@ucsd.edu
These slides can be downloaded from https://kskedlaya.org/slides/. Jupyter notebooks available from https://github.com/kedlaya/same-class-number.

## LMFDB, Computation, and Number Theory (LuCaNT) ICERM, Providence, RI <br> July 13, 2023

Supported by(grant DMS-2053473) and UCSan Diego (Warschawski Professorship).

I acknowledge that my workplace occupies unceded ancestral land of the Kumeyaay Nation.

## Contents

(1) The relative class number one problem and its status
(2) The problem at hand
(3) Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results

6 Next steps

## The relative class number one problem

Let $F^{\prime} / F$ be an extension of degree $d$ of function fields associated to a cover $C^{\prime} \rightarrow C$ of curves ${ }^{1}$ over finite fields. Let $g, g^{\prime}$ be the genera of $F$ and $F^{\prime}$. Let $q, q^{\prime}$ be the cardinalities of the base fields ${ }^{2}$ of $F, F^{\prime}$.
Let $h, h^{\prime}$ be the class numbers ${ }^{3}$ of $F$ and $F^{\prime}$. The ratio $h^{\prime} / h$ equals $\# A\left(\mathbb{F}_{q}\right)$ for $A$ the Prym (abelian) variety of $C^{\prime} / C$, and hence an integer. Following Leitzel-Madan (1976), we ask: in what cases does $h^{\prime} / h=1$ ?

To make this a potentially finite problem, we only specify the isomorphism classes of $F$ and $F^{\prime}$, not the inclusion (this only makes a difference when $g \leq 1$ ). We also ignore the trivial cases where $\operatorname{dim}(A)=0$ :

- $g=g^{\prime}=0$;
- $q=q^{\prime}$ and $1 \leq g=g^{\prime}$.
> ${ }^{1}$ All curves are smooth, projective, and geometrically irreducible (a/k/a "nice").
> ${ }^{2}$ By "base field" I mean the integral closure of the prime subfield.
> ${ }^{3}$ That is, $h=\# J(C)\left(\mathbb{F}_{q}\right)$ and $h^{\prime}=\# J\left(C^{\prime}\right)\left(\mathbb{F}_{q^{\prime}}\right)$.


## A heuristic for finiteness

By the Weil bound, $h^{\prime} / h=\# A\left(\mathbb{F}_{q}\right) \geq(\sqrt{q}-1)^{2 \operatorname{dim}(A)}>1$ if $q \geq 5$. So assume hereafter $q \leq 4$.

The condition $h^{\prime} / h=1$ means $\# A\left(\mathbb{F}_{q}\right)$ is abnormally small. This implies (roughly) that the Frobenius trace $T_{A, q}$ of $A$ is abnormally large. Since

$$
\begin{aligned}
T_{A, q} & =T_{C^{\prime}, q}-T_{C, q} \\
T_{C^{\prime}, q} & =q+1-\# C^{\prime}\left(\mathbb{F}_{q}\right) \leq q+1 \\
T_{C, q} & =q+1-\# C\left(\mathbb{F}_{q}\right)
\end{aligned}
$$

this means $T_{C, q}$ is abnormally small and so $\# C\left(\mathbb{F}_{q}\right)$ is abnormally large.
Using "linear programming" bounds on $\# C\left(\mathbb{F}_{q}\right)$ in terms of $g$, one can establish an effective finiteness result. By also accounting for $d$ (Riemann-Hurwitz, Deuring-Shafarevich, splitting behavior), one can make this bound practical.

## An answer, part I

I reported some partial results at ANTS-XV (Bristol, June 2022).

- Solved when $F^{\prime} / F$ is constant (i.e., $F^{\prime}=F \cdot \mathbb{F}_{q^{\prime}}$ ). We thus need only treat the case where $F^{\prime} / F$ is geometric (i.e., $q^{\prime}=q$ ).
- Solved when $q>2$, i.e., $q \in\{3,4\}$. Assume hereafter $q=2$.
- Solved when $g \leq 1$ (we get $g^{\prime} \leq 6$ ). ${ }^{4}$ Assume hereafter $g \geq 2$, so that $d:=\left[F^{\prime}: F\right] \leq \frac{g^{\prime}-1}{g-1}$ by Riemann-Hurwitz.
- Reduced to a finite computation: the zeta functions ${ }^{5} \zeta_{F}, \zeta_{F^{\prime}}$ of $F, F^{\prime}$ form one of 208 known pairs. In all cases, $g \leq 7, g^{\prime} \leq 13$.
- Solved when $g \leq 5$ and $F^{\prime} / F$ is a cyclic extension, by a table lookup for $F$ plus explicit class field theory (MAGMA).
For the last step, LMFDB includes a complete census of genus- $g$ curves over $\mathbb{F}_{2}$ for $g \leq 3$ (Sutherland), $g=4$ (Xarles), and $g=5$ (Dragutinović).

[^0]
## An answer, part II

I reported another partial result at $\mathrm{AGC}^{2} \top$ (Luminy, June 2023).
Theorem
Let $F^{\prime} / F$ be a finite geometric extension of function fields with $q=2, g>1, h^{\prime} / h=1$. Then $F^{\prime} / F$ is cyclic.

The proof strategy: for each pair $\left(\zeta_{F}, \zeta_{F^{\prime}}\right)$ with $3 \leq d \leq 7$ listed in the ANTS-XV data, check that the noncyclic options for the Galois group lead to abelian varieties ${ }^{6}$ with untenable point counts.

A useful slogan here is
the most radical [extreme] covers are radical [cyclic]:
the class number condition puts severe pressure on point counts and splitting of places, and cyclic covers are most resistant to this pressure.

[^1]
## Contents

(1) The relative class number one problem and its status
(2) The problem at hand
(3) Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results
(6) Next steps

## Where am I now? (part 1 of 2)

The only remaining cases of the relative class number one problem are $q=2, g \in\{6,7\}$, and $F^{\prime} / F$ is unramified of degree 2. Again it will suffice to find all $F$ with a given $\zeta_{F}$, then use Magma to find $F^{\prime}$ and $h^{\prime} / h$. If $g=6$ then $\# C\left(\mathbb{F}_{2}\right), \ldots, \# C\left(\mathbb{F}_{2^{6}}\right)$ appears in this list:

$$
\begin{array}{ccc}
4,14,16,18,14,92 & 5,11,11,31,40,53 & 6,10,9,38,11,79 \\
4,14,16,18,24,68 & 5,11,11,31,40,65 & 6,10,9,38,21,67 \\
4,14,16,26,14,68 & 5,11,11,39,20,53 & 6,10,9,38,31,55 \\
4,16,16,20,9,64 & 5,11,11,39,20,65 & 6,14,6,26,26,68 \\
5,11,11,31,20,65 & 5,13,14,25,15,70 & 6,14,6,26,26,80 \\
5,11,11,31,20,77 & 5,13,14,25,15,82 & 6,14,6,26,36,56 \\
5,11,11,31,20,89 & 5,13,14,25,15,94 & 6,14,6,34,16,56 \\
5,11,11,31,30,53 & 5,13,14,25,25,46 & 6,14,6,34,26,44 \\
5,11,11,31,30,65 & 5,13,14,25,25,58 & 6,14,12,26,6,44 \\
5,11,11,31,30,77 & 5,13,14,25,25,70 & 6,14,12,26,6,56 \\
5,11,11,31,30,89 & 5,15,5,35,20,45 & 6,14,12,26,6,66
\end{array}
$$

## Where am I now? (part 2 of 2)

If $g=7$ then $\# C\left(\mathbb{F}_{2}\right), \ldots, \# C\left(\mathbb{F}_{2^{7}}\right)$ appears in this list:

$$
\begin{gathered}
6,18,12,18,6,60,174 \\
6,18,12,18,6,72,132 \\
6,18,12,18,6,84,90 \\
7,15,7,31,12,69,126 \\
7,15,7,31,22,45,112 \\
7,15,7,31,22,57,70 \\
7,15,7,31,22,57,84
\end{gathered}
$$

Note that $\# C\left(\mathbb{F}_{2}\right)$ is "large" (in particular nonzero) but not "extremely large": for $g \in\{6,7\}$, the maximum number of points on a genus- $g$ curve over $\mathbb{F}_{2}$ is 10 . Hence we do expect to find some curves $C$, so methods based on ruling out curves cannot cover the entire range.

## An iteration over curves

We instead construct an iteration over a (possibly redundant) set of isomorphism representatives for genus-g curves over $\mathbb{F}_{2}$.

Previous calculations of this sort (e.g., in the work of $\mathrm{Faber}^{7}$-Grantham on the gonality of curves over finite fields) use singular plane models. Here, we instead use Mukai's descriptions of canonically embedded genus- $g$ curves in terms of linear sections of homogeneous varieties, with some extra effort paid to descending special linear systems to finite base fields.

[^2]
## Contents

(1) The relative class number one problem and its status
(2) The problem at hand

3 Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results
(6) Next steps

## Special linear systems

Let $C$ be a curve of genus $g$ over a finite field $k$. A $g_{d}^{r}$ is a line bundle of degree $d$ whose space of global sections has dimension $r+1$; if such a bundle is basepoint-free, then it defines a degree-d map to $\mathbf{P}_{k}^{r}$. For example, the canonical bundle is a $g_{d}^{r}$ for $r=g-1, d=2 g-2$.
Since $k$ is finite, every Galois-invariant divisor class on $C$ contains a $k$-rational divisor. In particular, if $C_{\bar{k}}$ admits a unique $g_{d}^{r}$ for some $r, d$, then so does $C .{ }^{8}$

For example, the Castelnuovo-Severi inequality implies that if $g>(d-1)^{2}$, then $C_{\bar{k}}$ can have at most one $g_{d}^{1}$. We say $C$ is hyperelliptic if it admits a unique $g_{2}^{1}$ and trigonal if it is not hyperelliptic but admits a unique $g_{3}^{1}$.

[^3]
## The canonical embedding

The canonical system defines a map $\iota: C \rightarrow \mathbf{P}_{k}^{g-1}$ which is an embedding unless $C$ is hyperelliptic (then $\iota$ is a $2-1$ cover of a rational normal curve). By Petri's theorem ${ }^{9}, \iota(C)$ is cut out (schematically) by quadrics unless

- $C$ is trigonal, or
- $g=6$ and $C$ is a smooth plane quintic.

This implies that the usual classification of curves of genus up to 5 remains valid when $k$ is finite: ${ }^{10}$

- If $g=2$, then $C$ is hyperelliptic.
- If $g=3$, then $C$ is hyperelliptic or a $\mathrm{Cl}^{11}$ of type (4) in $\mathbf{P}_{k}^{2}$.
- If $g=4$, then $C$ is hyperelliptic or a Cl of type (2) $\cap(3)$ in $\mathbf{P}_{k}^{3}$.
- If $g=5$, then $C$ is hyperelliptic, trigonal, or a CI of type (2) $\cap(2) \cap(2)$ in $\mathbf{P}_{k}^{4}$.

[^4]
## The Maroni invariant of a trigonal curve

For $C$ trigonal, the quadrics vanishing on $\iota(C)$ cut out a Hirzebruch surface

$$
\mathbf{F}_{n}=\operatorname{Proj}_{\mathbf{P}_{k}^{1}}\left(\mathcal{O}_{\mathbf{P}_{k}^{1}} \oplus \mathcal{O}(n)_{\mathbf{P}_{k}^{1}}\right)
$$

embedded in $\mathbf{P}^{g-1}$ by $|b+(n+1+i) f|$ for some $i \geq 0$ where $f$ is a fiber of $\mathbf{F}_{n} \rightarrow \mathbf{P}_{k}^{1}$ and $b$ is the unique irreducible curve with $b^{2}=-n$.
We call $n$ the Maroni invariant of $C$. We have $b \cdot C=\frac{g-3 n+2}{2}$, so so $n \in\left\{0, \ldots, \frac{g+2}{3}\right\}$ and $n \equiv g(\bmod 2)$.
For $n=0, \mathbf{F}_{0, \bar{k}} \cong \mathbf{P} \frac{1}{k} \times \mathbf{P}_{\bar{k}}^{1}$ and $C_{\bar{k}}$ is a $\left(3, \frac{g+2}{2}\right)$-hypersurface. Since $\frac{g+2}{2} \neq 3$ for $g \geq 5$, this description descends to $k$.
For $n>0, \mathbf{F}_{n}$ is an ( $n, 1$ )-hypersurface in $\mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{2}$. Blowing down along $b$ yields the weighted projective space $\mathbf{P}(1: 1: n)_{k}$.

## Contents

(1) The relative class number one problem and its status
(2) The problem at hand
(3) Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results
(6) Next steps

## The Brill-Noether stratification for $g=6$

From a corresponding result of Mukai over $\bar{k}$, we deduce that for $g=6, C$ has one of the following forms.

- Hyperelliptic.
- Trigonal of Maroni invariant 2: Cl of type $(2,1) \cap(1,3)$ in $\mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{2}$.
- Trigonal of Maroni invariant 0: Cl of type $(3,4)$ in $\mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{1}$.
- Bielliptic: ${ }^{12}$ double cover of a genus 1 curve.
- Smooth quintic: Cl of type (5) in $\mathbf{P}_{k}^{2}$.
- A Cl of type $(1)^{4} \cap(2)$ in the $G r a s s m a n n i a n ~ G r(2,5) \subset \mathbf{P}_{k}^{9}$ in its Plücker embedding.

[^5]
## The Brill-Noether stratification for $g=7$

By Mukai again, for $g=7, C$ has one of the following forms.

- Hyperelliptic.
- Trigonal of Maroni invariant 3: Cl of type (9) in $\mathbf{P}(1: 1: 3)_{k}$.
- Trigonal of Maroni invariant 1: Cl of type $(1,1) \cap(3,3)$ in $\mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{2}$.
- Bielliptic.
- Not bielliptic but admits a self-adjoint $g_{6}^{2}$ : Cl of type (3) $\cap(4)$ in $\mathbf{P}(1: 1: 1: 2)_{k}$.
- Admits two distinct $g_{6}^{2}$ 's over $k$ : CI of type $(1,1) \cap(1,1) \cap(2,2)$ in $\mathbf{P}_{k}^{2} \times \mathbf{P}_{k}^{2}$.
- Admits two distinct $g_{6}^{2}$ 's only over $\bar{k}: C I$ of type $(1,1) \cap(1,1) \cap(2,2)$ in the quadratic twist of $\mathbf{P}_{k}^{2} \times \mathbf{P}_{k}^{2}$.
- Tetragonal (admits a $g_{4}^{1}$ but not a $g_{3}^{1}$ or $g_{6}^{2}$ ): Cl of type $(1,1) \cap(1,2) \cap(1,2)$ in $\mathbf{P}_{k}^{1} \times \mathbf{P}_{k}^{3}$.
- None of the above, see below.


## Generic canonical curves of genus 7

Let $V$ be the vector space $k^{10}$ equipped with the quadratic form ${ }^{13}$
$\sum_{i=1}^{5} x_{i} x_{5+i}$. Let $\mathrm{SO}(V)$ be the index-2 subgroup of the orthogonal group of $V$ on which the Dickson invariant is trivial.

The 10-dimensional orthogonal Grassmannian OG parametrizes Lagrangian (maximal isotropic) subspaces of $V$. It admits a canonical spinor embedding $\mathrm{OG} \hookrightarrow \mathbf{P}_{k}^{15}$ on which $\mathrm{SO}(V)$ acts transitively.

There are two connected components of OG, stabilized by $\mathrm{SO}(V)$. Given $L_{0} \in \mathrm{OG}(k)$, we may characterize the component $\mathrm{OG}^{+}$containing $L_{0}$ as parametrizing $L$ with $\operatorname{dim}_{k}\left(L \cap L_{0}\right) \equiv 1(\bmod 2)$.

Theorem (after Mukai)
Every canonical genus-7 curve over $k$ arises as a Cl of type $(1)^{9}$ in $\mathrm{OG}^{+}$.

[^6]
## Contents

## (1) The relative class number one problem and its status

(2) The problem at hand
(3) Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results
(6) Next steps

## Review of point count conditions

For $g=6$, we are looking for $C$ for which $\# C\left(\mathbb{F}_{2}\right), \ldots, \# C\left(\mathbb{F}_{2^{6}}\right)$ appears in:

$$
\begin{array}{ccc}
4,14,16,18,14,92 & 5,11,11,31,40,53 & 6,10,9,38,11,79 \\
4,14,16,18,24,68 & 5,11,11,31,40,65 & 6,10,9,38,21,67 \\
4,14,16,26,14,68 & 5,11,11,39,20,53 & 6,10,9,38,31,55 \\
4,16,16,20,9,64 & 5,11,11,39,20,65 & 6,14,6,26,26,68 \\
5,11,11,31,20,65 & 5,13,14,25,15,70 & 6,14,6,26,26,80 \\
5,11,11,31,20,77 & 5,13,14,25,15,82 & 6,14,6,26,36,56 \\
5,11,11,31,20,89 & 5,13,14,25,15,94 & 6,14,6,34,16,56 \\
5,11,11,31,30,53 & 5,13,14,25,25,46 & 6,14,6,34,26,44 \\
5,11,11,31,30,65 & 5,13,14,25,25,58 & 6,14,12,26,6,44 \\
5,11,11,31,30,77 & 5,13,14,25,25,70 & 6,14,12,26,6,56 \\
5,11,11,31,30,89 & 5,15,5,35,20,45 & 6,14,12,26,6,66
\end{array}
$$

For $g=7$, we are looking for $C$ for which $\# C\left(\mathbb{F}_{2}\right), \ldots, \# C\left(\mathbb{F}_{2^{7}}\right)$ appears in:

$$
\begin{array}{lll}
6,18,12,18,6,60,174 & 7,15,7,31,12,69,126 & 7,15,7,31,22,57,70 \\
6,18,12,18,6,72,132 & 7,15,7,31,22,45,112 & 7,15,7,31,22,57,84 \\
6,18,12,18,6,84,90 & &
\end{array}
$$

## Initial cases

- If $g=6$, then $C$ cannot be hyperelliptic: we have $\# C\left(\mathbb{F}_{4}\right)>10=2 \# \mathbf{P}^{1}\left(\mathbb{F}_{4}\right)$ except in three cases where $\# C\left(\mathbb{F}_{16}\right)=38>34=2 \# \mathbf{P}^{1}\left(\mathbb{F}_{16}\right)$.
- If $g=7$, then $C$ cannot be hyperelliptic: we have $\# C\left(\mathbb{F}_{4}\right) \geq 15>10=2 \# \mathbf{P}^{1}\left(\mathbb{F}_{4}\right)$.
- If $g=7$ and $\# C\left(\mathbb{F}_{2}\right)=6$, then $C$ cannot be trigonal: we have $\# C\left(\mathbb{F}_{4}\right)=18>15=3 \# \mathbf{P}^{1}\left(\mathbb{F}_{4}\right)$.
- If $g=7$ and $\# C\left(\mathbb{F}_{2}\right)=7$, then $C$ cannot be trigonal of Maroni invariant 3: we have $\# C\left(\mathbb{F}_{2}\right)=7$ which exceeds the number of smooth points of $\mathbf{P}(1: 1: 3)\left(\mathbb{F}_{2}\right)$.
Also, for $C$ bielliptic, we can identify options for the genus- 1 curve, then use Magma to compute all double covers of the right genus.


## A paradigm for the remaining cases

In each remaining case, we are looking for certain complete intersections $X_{1} \cap \cdots \cap X_{m}$ inside some homogeneous variety $X$ over $\mathbb{F}_{2}$.

- Compute $S:=X\left(\mathbb{F}_{2}\right)$ and $G:=\operatorname{Aut}(X)\left(\mathbb{F}_{2}\right)$.
- Compute orbit representatives for the $G$-action on subsets of $S$ of size at most $g$. More on this below. ${ }^{14}$
- For each representative subset of size in $\{4,5,6\}$ (if $g=6$ ) or $\{6,7\}$ (if $g=7$ ), use linear algebra to find all tuples of hypersurfaces $X_{1}, \ldots, X_{m-1}$ of the desired degrees containing these $\mathbb{F}_{2}$-points.
- For each choice, impose linear conditions on $X_{m}$ to ensure that $X_{1} \cap \cdots \cap X_{m}$ has exactly the specified set of $\mathbb{F}_{2}$-rational points. This crucially exploits the fact that the base field is $\mathbb{F}_{2}$; a similar strategy is used by Faber-Grantham.

[^7]
## Group actions on subsets

Let $G$ be a finite group acting on a finite set $S$. We need to compute orbit representatives for the action of $G$ on $k$-element subsets of $S$ without instantiating in memory the full list of $k$-element subsets.

For this we use an inductive combinatorial construction called an orbit lookup tree. It answers the question: given a sequence $x_{1}, \ldots, x_{k}$, find a permutation $\pi$ of $\{1, \ldots, k\}$ and an element $g \in G$ such that for each $i$, $\left\{g\left(x_{\pi(1)}\right), \ldots, g\left(x_{\pi(i)}\right)\right\}$ is an orbit representative for $i$-element subsets.
In some cases, a strategy introduced by Auel-Kulkarni-Petok-Weinbaum based on decomposing $k[G]$-modules may be superior.

## Summary of the computation

| Type of $C$ | Dim | $\# C$ | $\# C^{\prime}$ | Time $^{15}$ |
| :---: | :---: | :---: | :---: | :---: |
| $g=6$, hyperelliptic | 11 | 0 | 0 | - |
| $g=6$, trigonal, Maroni 2 | 12 | 9 | 0 | 10 m |
| $g=6$, trigonal, Maroni 0 | 13 | 9 | 0 | 2 m |
| $g=6$, bielliptic | 10 | 0 | 0 | - |
| $g=6$, plane quintic | 12 | 1 | 0 | 1 m |
| $g=6$, generic | 15 | 38 | 2 | 4 h |
| $g=7$, hyperelliptic | 13 | 0 | 0 | - |
| $g=7$, trigonal, Maroni 3 | 13 | 0 | 0 | - |
| $g=7$, trigonal, Maroni 1 | 15 | 0 | 0 | 5 m |
| $g=7$, bielliptic | 12 | 2 | 1 | 5 m |
| $g=7$, self-adjoint $g_{6}^{2}$ | 15 | 0 | 0 | 5 m |
| $g=7$, rational $g_{6}^{2}$ | 16 | 0 | 0 | 30 m |
| $g=7$, irrational $g_{6}^{2}$ | 16 | 0 | 0 | 45 m |
| $g=7$, tetragonal, no $g_{6}^{2}$ | 17 | 1 | 0 | 2 h |
| $g=7$, generic | 18 | 1 | 0 | 1 h |

${ }^{15}$ These are wall times on a laptop. Don't take them too seriously; there are many confounding factors at work.

## The final results

## Theorem

(a) There are two isomorphism classes of curves $C$ of genus 6 over $\mathbb{F}_{2}$ admitting an étale double covering $C^{\prime} \rightarrow C$ such that $\# J\left(C^{\prime}\right)\left(\mathbb{F}_{2}\right)=\# J(C)\left(\mathbb{F}_{2}\right)$. The curves $C$ are Brill-Noether general with automorphism groups $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$.
(b) There is a unique isomorphism class of curves $C$ of genus 7 over $\mathbb{F}_{2}$ admitting an étale double covering $C^{\prime} \rightarrow C$ such that $\# J\left(C^{\prime}\right)\left(\mathbb{F}_{2}\right)=\# J(C)\left(\mathbb{F}_{2}\right)$. The curve $C$ is bielliptic with automorphism group $\mathrm{D}_{6}$.

In the latter case, $C$ admits the affine model

$$
\operatorname{Spec} \frac{\mathbb{F}_{2}[x, y, z]}{\left(y^{2}+\left(x^{3}+x^{2}+1\right) y+x^{2}\left(x^{2}+x+1\right), z^{2}+z+x^{2}(x+1) y\right)} .
$$

## Contents

(1) The relative class number one problem and its status
(2) The problem at hand
(3) Review of canonical curves
(4) Canonical curves of genus 6 and 7
(5) Computation and results

6 Next steps

## A full census of genus-6 and genus-7 curves

It would be desirable to have a full census of genus- $g$ curves over $\mathbb{F}_{2}$ for $g=6,7$. This would provide a valuable consistency check, and also serve as a rich resource for future investigation (ideally as part of LMFDB).
A further consistency check ${ }^{16}$ would be provided by computing ${ }^{17}$ $\# M_{g}\left(\mathbb{F}_{2}\right)$ using explicit generators/relations for the Chow ring. For $g=6$, this has been achieved using very recent work of Canning-H. Larson. ${ }^{18}$

It should be possible to upgrade our existing code to remove the filtering on zeta functions to achieve a full census. For $g=6$, this is work in progress with Jun Bo Lau, but extra help would be welcome.

[^8]
## Into the wild: beyond genus 7

Since $M_{g}$ has dimension $3 g-3$, we expect $\# M_{g}\left(\mathbb{F}_{2}\right)$ to be roughly $2^{3 g-3}$. So it might be feasible to compile a census ${ }^{19}$ of genus- $g$ curves over $\mathbb{F}_{2}$ for $g=8,9,10$.

Conveniently, Mukai also has similar descriptions of canonical curves in these genera. For example, a general canonical genus-8 curve is a linear section of $\operatorname{Gr}(2,6) \subset \mathbf{P}_{k}^{14}$.
However, it will take significant implementation skill to keep the complexity down to a manageable level.

[^9]
[^0]:    ${ }^{4}$ The case $g=0$ was handled by Mercuri-Stirpe and Shen-Shi; we get $g^{\prime} \leq 4$.
    ${ }^{5}$ Reminder: the data of $\zeta_{F}$ and $\left(\# C\left(\mathbb{F}_{q^{i}}\right)\right)_{i=1}^{g}$ are equivalent.

[^1]:    ${ }^{6}$ These are certain isogeny factors of the Jacobian of the Galois closure. Compare Paulhus's ANTS-X paper.

[^2]:    ${ }^{7}$ This is Xander, not Carel.

[^3]:    ${ }^{8}$ By contrast, over $\mathbb{Q}$, when $g>2$ it is possible for a curve to be "geometrically hyperelliptic" by being a double cover of a pointless genus-0 curve.

[^4]:    ${ }^{9}$ More precisely, by Saint-Donat's version valid in any characteristic.
    ${ }^{10}$ For $k$ perfect, we must insert "geometrically" before "hyperelliptic/trigonal".
    ${ }^{11}$ complete intersection

[^5]:    ${ }^{12}$ Again by Castelnuovo-Severi, this cover is unique for $g>5$, and so descends to $k$.

[^6]:    ${ }^{13}$ For $k$ finite, there is a second form with no Lagrangian subspaces defined over $k$; but the fact that curves always have points over large odd-degree extensions means we don't need to worry about the second form.

[^7]:    ${ }^{14}$ For $g=7, X=\mathrm{OG}^{+}$, we use a slightly different setup that requires only the action on 6-element subsets.

[^8]:    ${ }^{16}$ Such a count can even be used to certify the validity of a census: it is easy to compute automorphism groups and check pairwise nonisomorphism for an explicit list of curves, this providing a concrete lower bound on stacky $\# M_{g}\left(\mathbb{F}_{2}\right)$.
    ${ }^{17}$ This point count is stacky: the isomorphism class of a curve $C$ has weight $\frac{1}{\text { \#Aut(C) }}$.
    ${ }^{18}$ Odd coincidence: Hannah is also lecturing in Providence at this hour!

[^9]:    ${ }^{19}$ Faber-Grantham encountered a single zeta function that they had to show did not occur in genus 9 . Fortunately they were able to do this by "pure thought".

