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Hypergeometric differential equations

Hypergeometric equations and hypergeometric series

Let n be a positive integer. For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Cn,
we consider the hypergeometric equation (for D = z d

dz )

(z(D + α1) · · · (D + αn)− (D + β1 − 1) · · · (D + βn − 1)) (y) = 0.

This equation is regular with the following singularities and exponents:

z = 0 : 1− β1, . . . , 1− βn
z =∞ : α1, . . . , αn

z = 1 : 0, . . . , n − 2, γ, γ :=
∑

βi −
∑

αi .

The monodromy representation can be described explicitly (see
Beukers–Heckman); it is irreducible provided that αi − βj /∈ Z for all i , j .

There are intertwining operators for integer shifts of the parameters; we
may thus normalize all parameters to have real part in [0, 1).
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Hypergeometric differential equations

Solutions of hypergeometric equations

Define the rising Pochhammer symbol

(α)n := α(α + 1) · · · (α + n − 1).

If βi /∈ {0,−1,−2, . . . } for i = 1, . . . , n− 1, then the hypergeometric series

Fn n−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

zk

k!

is a solution of the hypergeometric equation in CJzK with βn = 1.
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Hypergeometric differential equations

Formal solutions of a hypergeometric equation

Suppose that for some i ∈ {1, . . . , n}, βj − βi /∈ Z for all j 6= i . Then one
has a formal solution of the hypergeometric equation given by

z1−βi Fn n−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, . . . , ̂βi − βi + 1, . . . , βn − βi + 1

∣∣∣∣ z) .
If βj − βi /∈ Z for all j 6= i , these expressions constitute a formal solution
basis at z = 0. If in addition β ∈ Qn, these form a genuine C-basis of the
solutions in the Puiseux field

⋃∞
m=1 C((z1/m)).

If βj − βi ∈ Z for some i , j , one can obtain a formal solution basis by
differentiating with respect to parameters; when β ∈ Qn, these live in⋃∞

m=1 C((z1/m))[log z ]. For simplicity, I will (mostly) omit this case.
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Frobenius structures

Differential systems

For the purposes of considering Frobenius structures, it is convenient to
work with first-order differential systems. For a system of the form
Nv + D(v) = 0 where N is the companion matrix

N :=


0 −1 · · · 0 0
0 0 0 0
...

. . .
...

0 0 0 −1
a0 a1 · · · an−2 an−1

 ,

the solutions are the vectors of the form

v =


y

D(y)
...

Dn−1(y)

 where Dn(y) + an−1D
n−1(y) + · · ·+ a0y = 0.
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Frobenius structures

Frobenius structures

Fix a prime p. Let K be the completion of Qp(z) for the Gauss norm,
viewed as a differential field for the derivation D = z d

dz .

Let σ : K → K be a Frobenius lift, i.e., a continuous endomorphism
satisfying |σ(z)− zp| < 1. Define the quantity

cσ :=
D(σ(z))

σ(z)
;

it satisfies |cσ| < 1.

Given a differential system defined by a matrix N over K , a Frobenius
structure with respect to σ is given by a matrix F satisfying

NF + D(F ) = cσFσ(N).

In the language of connections, the map v 7→ Fσ(v) defines an
isomorphism of the pullback connection (via σ) with the original one.
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Frobenius structures

Change of the Frobenius lift

In principle, the definition of a Frobenius structure depends on the choice
of σ. However, it turns out that this is illusory.

Define the sequence of matrices

N0 = 1, Nk+1 = (N − k + 1)Nk + D(Nk) (k = 0, 1, . . . ).

Then for any other Frobenius lift σ′, the formula

F ′ =
∞∑
n=0

(σ′(z)− σ(z))n

n!
Fσ(Nk)

converges and defines a Frobenius lift with respect to σ′. This can be used
to transfer some information between different choices of σ.
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Frobenius structures

Convergence of local solutions

In general, the Cauchy theorem does not apply to p-adic power series: the
exponential series satisfies a nonsingular differential equation on the entire
z-line, but has a finite radius of convergence.

However, consider a differential system with no singularities in the disc
|z | < 1. Then the existence of a Frobenius structure implies (by an
argument of Dwork) that the formal solutions in QpJzKn converge on the
disc |z | < 1.

A similar argument applies in the case of a single regular singularity in the
disc, located at z = 0, with exponents in Q ∩ Zp. Note that in this case,
the existence of a Frobenius structure implies that the exponents form a
multisubset of Q/Z which is stable under multiplication by p.
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Frobenius structures

Frobenius structures on hypergeometric equations

We say that parameters α, β ∈ Qn are Galois-stable if the multisets
{e2πiαj : j = 1, . . . , n}, {e2πiβj : j = 1, . . . , n} are Galois-stable. That is,
any two classes in Q/Z of the same order occur with equal multiplicities.

Theorem (Dwork)

If α, β ∈ Qn are Galois-stable, then the differential system associated to
the hypergeometric equation admits a Frobenius structure. If in addition
α, β are disjoint modulo Z, the Frobenius structure is unique up to a
Qp-scalar multiple.

Without the Galois-stable condition, one gets a matrix F for which
N ′F + D(F ) = cσFσ(N), where N ′ is the companion matrix for the
hypergeometric equation with parameters α′ = pα mod Z, β′ = pβ
mod Z. These matrices have some good p-adic analyticity properties.
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Hypergeometric L-functions

L-functions of varieties

Let X be a smooth proper variety over a number field K . For
i = 0, . . . , 2 dim(X ), one can form an (incomplete) L-function

LX ,i (s) =
∏
p

det(1−Norm(p)−sFrobp,H i
et(XK ,Q`)

Ip)−1,

where p runs over prime ideals of the integer ring oK ; this is a Dirichlet
series which converges absolutely for Re(s)� 0. (The determinant is
nominally a polynomial in Norm(p)−s with coefficients in Q`, but in fact
the coefficients belong to Q.)

Conjecturally, after completing with suitable Γ-factors, one gets a function
which admits meromorphic continuation to C and a functional equation
with respect to s 7→ i + 1− s. When this is known it is often very deep
(e.g., for elliptic curves over totally real fields).
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Hypergeometric L-functions

L-functions of motives

A motive1 of weight i over K gives rise to, for some smooth proper X/K ,
a linear projector on H i

et(XK ,Q`) for each ` which are “induced by a
uniform geometric construction.” For M such an object, we may define its
L-function LM(s) by analogy with LX ,i (s); we then have

LX ,i (s) = LM(s)LM′(s)

where M ′ is the complementary motive (i.e., the family of complementary
projectors). This generalizes the factorization of the Dedekind zeta
function of a number field into Artin L-functions.

One similarly defines morphisms between motives, which may go between
different varieties. In the resulting category, one has isomorphic motives
with different ambient varieties, e.g., the full 1-motives of isogenous
elliptic curves or abelian varieties.

1There are numerous ways to formalize the definition, none entirely satisfactory.
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Hypergeometric L-functions

Motives and differential equations

One can similarly define a family of motives over Q(z). In this case, one
also obtains (using the de Rham realization) a connection on Q(z), the
Gauss–Manin connection of the family; if the latter is expressed as the
differential system associated to an equation, the latter is called a
Picard–Fuchs equation of the family.

This equation will admits a Frobenius structure at p for almost all p
(which must be normalized suitably). For z ∈ Q at which the equation is
nonsingular, the specializations at z can be used2 to compute the
L-function of the specialized motive.

Example: for the Legendre family of elliptic curves y2 = x(x − 1)(x − z),
the Gaussian hypergeometric equation (i.e., n = 2, α = (1/2, 1/2),
β = (1, 1)) appears as a Picard–Fuchs equation. The Frobenius structure
in this case was constructed explicitly by Dwork.

2Hidden subtlety: for any given p, I need to evaluate not at z , but at the p-power
root of unity in the same residue disc; but it is easy to convert between these.
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Hypergeometric L-functions

Hypergeometric motives

For any parameters α, β ∈ Qn which are Galois-stable and disjoint modulo
Z, the hypergeometric equation arises from a family of motives described
by Katz. These are of interest in arithmetic geometry for several reasons.

There are good algorithms for computing the associated L-functions,
including the Cohen–Rodriguez Villegas–Watkins p-adic adaptation of
the Beukers–Cohen–Mellit trace formula; this is implemented in
Magma and Sage. (See later in this lecture for an alternative.)
The motives that occur include various interesting examples, including
some motives associated to K3 surfaces, Calabi–Yau threefolds, etc.
They also include some more exotic examples which are hard to
replicate in other ways. (More precisely: there is an algorithm to
identify hypergeometric motives with particular Hodge numbers.)
Putting this together, we obtain a mechanism for testing conjectures
about the L-functions of motives, particularly questions about special
values (conjectures of Beilinson, Deligne, Bloch–Kato, etc.).
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Hypergeometric L-functions

Hypergeometric motives and the LMFDB

The LMFDB (L-Functions and Modular Forms Database) is an ongoing
collaborative project to build a “star chart” of L-functions and
arithmetic-geometric objects associated with them:

number fields (Jones–Roberts tables);

elliptic curves over Q and some other number fields (Cremona tables);

some curves of genus > 1 (Sutherland tables);

classical and some higher-rank modular forms (Hilbert, Bianchi,
Siegel);

lattices (Nebe–Sloane tables)...

Hypergeometric motives have been targeted for inclusion into the LMFDB
because they provide examples of L-functions of “diverse shapes,” with no
a priori limitations on the Hodge numbers.
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Computing hypergeometric Frobenius structures

Overview

We now describe a strategy for computing the (normalized) Frobenius
structure on a Galois-stable hypergeometric equation for the Frobenius lift
σ : z 7→ zp in the case where α, β ∈ (Q ∩ Zp ∩ [0, 1))n are disjoint and β
has no repeats (but α is otherwise unrestricted).

This is work in progress; some steps need to be rigorously justified.
However, it sems to work in practice; see this Jupyter notebook on
CoCalc for a demonstration in Sage that I gave at the Hausdorff Institute
in March, in which I compare results against Sage’s implementation of the
trace formula of Cohen et al.

Similar strategies have been used in previous algorithms, originating with
the work of Lauder. A particularly good implementation, in the context of
families of smooth projective hypersurfaces, has been produced by
Pancratz–Tuitman.
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Computing hypergeometric Frobenius structures

Changes of basis

The effect of changing basis on a differential system, and a Frobenius
structure, is as follows:

N 7→ U−1NU + U−1D(U), F 7→ U−1Fσ(U).

Over QpJzK, we may write down an invertible matrix U for which

N0 := U−1NU + U−1D(U) = Diag(β1 − 1, . . . , βn − 1) :

Uij =
n∏

k=1

(αk − βj)+

(βk − βj)+
(D + 1− βj)i−1yj , x+ =

{
x x  0

1 x < 0,

yj = Fn n−1

(
α1 − βj + 1, . . . , αn − βj + 1

β1 − βj + 1, . . . , ̂βj − βj + 1, . . . , βn − βj + 1

∣∣∣∣∣ z
)
.
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Computing hypergeometric Frobenius structures

Solving for the Frobenius structure

The commutation relation between N0 and F0 := U−1Fσ(U) now reads

N0F0 + D(F0) = pF0σ(N0).

It implies that (F0)ij = 0 unless βi ≡ pβj (mod Z). In the latter case, for
some λi ∈ Q×p we have

(F0)ij = λiz
pβj−βi+1.

Suppose that we somehow knew how to compute the λi . We could then
use these as an initial condition to compute F0, and hence
F = UF0σ(U−1), as a matrix over QpJzK.

The matrices U and U−1 have entries which converge on the disc |z | < 1
but are unbounded; thus they cannot belong to K (the completion of
Qp(z) for the Gauss norm). However, F has entries in the completion of
Qp[z , z−1, (z − 1)−1] within K ; so we can evaluate at any z with
|z | = |z − 1| = 1. (For any given z , this excludes finitely many p which
require separate attention.)
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Computing hypergeometric Frobenius structures

A conjecture for the initial condition

Recall that the previous strategy depends on identifying the scalars λi
appearing in the transformed Frobenius matrix F0; this is where the
normalization comes into the story.

Conjecture

For i , j with βi ≡ pβj (mod Z), we have

λi = pZ(βj )−mink{Z(βk )}(−1)1+Z(βi )
n∏

k=1

Γp((αk − βi ) mod 1)/Γp(αk)

Γp((βk − βi ) mod 1)/Γp(βk)
,

where Z denotes the “zigzag function” associated to the parameters:

Z (x) := #{k : αk ¬ x} −#{k : βk ¬ x}.

This has been tested for thousands of random parameters with n ¬ 6. It
may follow from work in Dwork’s Generalized Hypergeometric Functions.
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Computing hypergeometric Frobenius structures

Aside on the p-adic Gamma function

In the previous formula

λi = pZ(βj )−mink{Z(βk )}(−1)1+Z(βi )
n∏

k=1

Γp((αk − βi ) mod 1)/Γp(αk)

Γp((βk − βi ) mod 1)/Γp(βk)
,

Γp : Zp → Z×p denotes the p-adic Gamma function of Morita; it is
characterized by continuity, the normalization Γp(0) = 1, and the
functional equation

Γp(x + 1)

Γp(x)
=

{
−x x ∈ Z×p
−1 x ∈ pZp.

This function appears in the Gross–Koblitz formula expressing Gauss sums
in terms of the values of Γp at rational numbers. The appearances of Γp in
the expression for λi is surely related!
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Computing hypergeometric Frobenius structures

Explicit bounds on the Frobenius structure: p-adic direction

Recall that F has entries in the completion of Qp[z , z−1, (z − 1)−1] within
K ; we can thus only hope to compute a p-adic approximation to the entries
of F , and hence a p-adic approximation to the characteristic polynomial of
F . Using the Weil conjectures, it is easy to predict how accurate the latter
approximation needs to be in order to provably recover the L-function.

To translate this into an estimate for the required precision for the
approximation of F , we need to bound the p-adic norms of the entries of
F . Some (limited) experimentation suggests the following.

Conjecture

The p-adic norms of the entries of F are bounded by pk for

k = max{vp(αi − βj) : i , j = 1, . . . , n}.

In particular, if αi 6≡ βj (mod p) for all i , j , then F has entries in oK .

Kiran S. Kedlaya Frobenius structures on hypergeometrics Luminy, May 29, 2018 24 / 28



Computing hypergeometric Frobenius structures

Explicit bounds on the Frobenius structure: p-adic direction

Recall that F has entries in the completion of Qp[z , z−1, (z − 1)−1] within
K ; we can thus only hope to compute a p-adic approximation to the entries
of F , and hence a p-adic approximation to the characteristic polynomial of
F . Using the Weil conjectures, it is easy to predict how accurate the latter
approximation needs to be in order to provably recover the L-function.

To translate this into an estimate for the required precision for the
approximation of F , we need to bound the p-adic norms of the entries of
F . Some (limited) experimentation suggests the following.

Conjecture

The p-adic norms of the entries of F are bounded by pk for

k = max{vp(αi − βj) : i , j = 1, . . . , n}.

In particular, if αi 6≡ βj (mod p) for all i , j , then F has entries in oK .

Kiran S. Kedlaya Frobenius structures on hypergeometrics Luminy, May 29, 2018 24 / 28



Computing hypergeometric Frobenius structures

Explicit bounds on the Frobenius structure: z-adic direction

Recall also that F is being computed as a z-adic power series over Qp. We
must truncate modulo some power of z and then recognize the result as
an element of Qp[z , z−1, (z − 1)−1]; for this, we need a bound on the pole
orders at z = 1 and z =∞.

It is possible (although we have not yet done so) to obtain such bounds by
comparing the Frobenius structures with respect to σ and
σ′ : z 7→ (z − 1)p + 1. However, experiments suggest that the optimal
bounds are stronger than what a direct approach would give; this may be
connected to supercongruences of finite hypergeometric sums.

With this bound in hand, one can then go back and control the working
p-adic precision needed for the computation of U. For p � 0, the number
of terms of the power series needed will be O(p)� p2, so the requisite
truncation of pnU will have entries in Zp. Moreover, the requisite
truncation of σ(U)−1 will have entries in Zp, with no rescaling required!
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Computing hypergeometric Frobenius structures

Postscript: average polynomial time methods

As a side benefit of this analysis, it should be possible to adapt the
previous computation so that, for any hypergeometric motive over Q, the
factors of the L-functions at all primes p ¬ X (omitting primes of bad
reduction) are computed in average polynomial time per p; this has
previously been achieved in the context of hyperelliptic curves by Harvey
(and implemented by Harvey–Sutherland in genus ¬ 3). The key idea is
contained in the following related result.

Theorem (Costa–Gerbicz–Harvey)

There is an algorithm which computes
(
p−1

2

)
! (mod p2) for all odd

primes p ¬ X in time O(X logm X ) for some m. That is, the average time
per p is polynomial in log p.

The idea: one needs to compute (bX/2c)! modulo all p for X/2 ¬ p ¬ X ;
so we do it modulo the product instead, using fast multiplication in Z.
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Conclusion

Conclusion

To summarize:

hypergeometric equations whose parameters are Galois-stable, distinct
modulo Z, and p-adically integral admit Frobenius structures;

when β has no repeats3 modulo Z, these are effectively computable
as power series around z = 0 given an initial condition4;

and with enough concrete analysis of p-adic and z-adic precision, this
becomes an effective algorithm for computing the L-functions of
hypergeometric motives.

If time permits, we can look at my demonstration from March. Otherwise,
thank you for your attention.

3It should be possible to extend to the case of repeated parameters by working not
over Qp, but some nilpotent deformation thereof.

4In most other contexts, the initial condition is obtained as a nonsingular point, as
this avoids some touchy issues regarding p-adic nearby cycles.
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