Abelian varieties over \mathbb{F}_{2} of prescribed order

> Kiran S. Kedlaya work in progress (draft available)

Department of Mathematics, University of California San Diego kedlaya@ucsd.edu

These slides can be downloaded from https://kskedlaya.org/slides/.

Explicit Methods in Number Theory
 Mathematisches Forschungsinstitut Oberwolfach (hybrid meeting)

 July 22, 2021The UC San Diego campus sits on unceded ancestral land of the Kumeyaay Nation, whom I thank for their stewardship.

The order of an abelian variety

Let A be an abelian variety over \mathbb{F}_{q}. Then the order of A is given by

$$
\# A\left(\mathbb{F}_{q}\right)=P(1)
$$

where $P \in \mathbb{Z}[T]$ is the charpoly of Frobenius on A.*
By a theorem of Weil, for $g=\operatorname{dim}(A)$, in $\mathbb{C}[T]$ we have

$$
P(T)=\left(T-\alpha_{1}\right) \cdots\left(T-\alpha_{2 g}\right)
$$

where $\left|\alpha_{i}\right|=\sqrt{q}$ and $\alpha_{g+i}=\bar{\alpha}_{i}$.
Conversely, by Honda-Tate, given a polynomial $P \in \mathbb{Z}[T]$ of this form, some power of it occurs as the charpoly of Frobenius of some A. When $q=p, P$ itself always occurs.

[^0]
A closer look at the Weil bound

Weil's theorem implies that for $g=\operatorname{dim}(A)$,

$$
(\sqrt{q}-1)^{2 g} \leq \# A\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2 g} .
$$

For fixed q, as $g \rightarrow \infty$ these intervals start to overlap, so there does not appear to be an obstruction to realizing every sufficiently large integer as the order of an abelian variety over \mathbb{F}_{q} (of arbitrary order).

One can turn this intuition into a theorem by giving systematic constructions of Weil polynomials. This leads to results as on the next slide.

Acknowledgment: these are partly inspired by the tables of isogeny classes of abelian varieties in LMFDB (Dupuy-K-Roe-Vincent).

Realization of orders

Theorem (Howe-K, March 2021)
Every positive integer (with no exceptions!) is the order of an abelian variety over \mathbb{F}_{2}, which may even taken to be ordinary.

Theorem (van Bommel-Costa-Li-Poonen-Smith, June 2021)

For any given q, every sufficiently large positive integer ${ }^{a}$ is the order of an abelian variety over \mathbb{F}_{q}, which may even taken to be ordinary, geometrically simple, and principally polarizable.

[^1]
An improved Weil bound

It is possible to improve the Weil bounds for simple abelian varieties. For example, Kadets (following Aubry-Haloui-Lachaud) showed that for $q>2$, if A is simple of dimension g, then with finitely many exceptions ${ }^{\dagger}$

$$
\# A\left(\mathbb{F}_{q}\right) \geq 1.359^{g}
$$

In particular, for $q>2$ any given positive integer can only occur as the order of finitely many simple abelian varieties over \mathbb{F}_{q}.
By contrast, Madan-Pal (1970s) found ${ }^{\ddagger}$ infinitely many simple abelian varieties over \mathbb{F}_{2} of order 1 (and even classified the Weil polynomials). Kadets (2020) asked whether there are infinitely many simple abelian varieties over \mathbb{F}_{2} of order 2 . It is also natural to consider higher orders...

[^2]
The main result

Theorem (K, July 2021)

For every positive integer m, there exist infinitely many simple abelian varieties over \mathbb{F}_{2} of order m.

The method of proof is constructive: for every m we exhibit an explicit sequence of Weil polynomials corresponding to abelian varieties over \mathbb{F}_{2} of order m. With some care, we can also ensure that these polynomials are (nearly) irreducible.

By contrast, I expect there are only finitely many Jacobians over \mathbb{F}_{2} of order m, but this only seems to be known for $m=1$ (Madan-Queen, Stirpe, Mercuri-Stirpe, Shen-Shi).

The method of proof does not ensure that we get ordinary, geometrically simple, or principally polarizable AV s.

Reduction steps

Any Weil polynomial of degree $2 g$ for $q=2$ has the form

$$
T^{g} P(T+2 / T)
$$

where $P(T) \in \mathbb{Z}[T]$ is a monic polynomial with all roots in $[-2 \sqrt{2}, 2 \sqrt{2}]$ and satisfies $\# A\left(\mathbb{F}_{2}\right)=P(3)$.
Following Madan-Pal (and R. Robinson), consider the polynomial

$$
Q(T)=(-1)^{\operatorname{deg} P} P(3-T)
$$

which has roots in $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$ and satisfies $\# A\left(\mathbb{F}_{2}\right)=|Q(0)|$. The roots of $Q(x)$ are totally positive algebraic integers of small norm, with all conjugates in a short interval.

Chebyshev polynomials and a substitution

Note that $x \mapsto x+x^{-1}-4$ carries $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$ onto $[-2,2]$.

Let T_{n} be the n-th Chebyshev polynomial for the normalization

$$
T_{n}(2 \cos \theta)=2 \cos n \theta
$$

Then

$$
f_{n}(x):=x^{n} T_{n}\left(x+x^{-1}-4\right)
$$

is a polynomial with constant term 1 and all roots in $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$. Madan-Pal show ${ }^{\S}$ that this accounts for all AV s over \mathbb{F}_{2} of order 1.

[^3]
A modified construction

Define

$$
g_{n, k}(x):=(x-1)^{-k} \sum_{j=0}^{k}\binom{k}{j} f_{n+j}(x) \in \mathbb{Z}[x] \text {. }
$$

We will see shortly that $g_{n, k}(x)$ also has all roots in $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$. Note that $\left|g_{n, k}(0)\right|=2^{k}$.

More generally, we will give a condition on a sequence $a_{0}, \ldots, a_{k}=1$ of real numbers under which the polynomial

$$
\sum_{i} a_{i} g_{n, i}(x)
$$

has all roots in $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$; see next slide.

Sketch of a proof (via winding numbers)

Theorem (K, July 2021)
For $a_{0}, \ldots, a_{k}=1 \in \mathbb{R}$ such that $\sum_{i=0}^{k} a_{i} z^{i}$ all \mathbb{C}-roots in the disc $|z| \leq \sqrt{2}, P_{n}(x)=\sum_{i} a_{i} g_{n, i}(x)$ has all \mathbb{C}-roots in $[3-2 \sqrt{2}, 3+2 \sqrt{2}]$.

Sketch of proof: for $\theta \in[0,2 \pi]$, put $y(\theta)=e^{2 \pi i \theta}$ and let $x(\theta)$ be a root of

$$
x(\theta)+x(\theta)^{-1}-4=2 \cos \theta=y(\theta)+y(\theta)^{-1}
$$

varying continuously from $3+2 \sqrt{2}$ to $3-2 \sqrt{2}$. Now write

$$
P_{n}(x(\theta))=2 x(\theta)^{n} \operatorname{Re}\left(y(\theta)^{n} s(\theta)^{k} \sum_{i=0}^{k} a_{i} s(\theta)^{i-k}\right), s(\theta)=\frac{x(\theta) y(\theta)+1}{x(\theta)-1}
$$

and compute complex arguments; since $|s(\theta)|=\sqrt{2}$, the sum over i is dominated by the term $i=k$.

A convenient choice

Each positive integer m has a unique nonadjacent binary representation (Reitwiesner, 1960):

$$
m=\sum_{i=0}^{k} a_{i} 2^{i} \quad \text { where } \quad a_{i} \in\{-1,0,1\}, a_{k}=1, a_{i} a_{i+1}=0 \quad(i \geq 0)
$$

The previous theorem applies to

$$
h_{n, m}(x):=\sum_{i=0}^{k}(-1)^{i+k} a_{i} g_{n, i}(x)
$$

for which $\left|h_{n, m}(0)\right|=m$: the nonadjacent condition implies

$$
\sum_{i=0}^{k-1}\left|a_{i}\right| 2^{(i-k) / 2}<2^{-1}+2^{-2}+\cdots=1
$$

which implies that $\sum_{i=0}^{k} a_{i} z^{i}$ has all roots in $|z| \leq \sqrt{2}$.

Proof of the theorem: even order case

For any fixed choice of the a_{i}, the polynomials $P_{n}(x)=\sum_{i} a_{i} g_{n, i}(x)$ satisfy a second-order linear recurrence. This implies that any irreducible factor shared by two of the $P_{n}(x)$ must be a factor of some $f_{n}(x)$ (and so corresponds to a simple AV of order 1).

For m even, we can arrange (using either $h_{n, m}(x)$ or a slight variant) that the 2-adic Newton polygon forces an irreducible factor over \mathbb{Q}_{2} of bounded codegree, and hence likewise over \mathbb{Q}. The cofactor is limited to a finite set, in which only polynomials with constant term ± 1 occur more than once; so the big irreducible factor usually has constant term $\pm m$.

Proof of the theorem: odd order case

For m odd, we can force $P_{n}(x+1)$ to be Eisenstein at 2!

Lemma

There exists a monic integer polynomial $Q(z)$ such that:

- $Q(2)=m$;
- $Q(z) \equiv(z-1)^{\operatorname{deg} Q(z)}(\bmod 2) ;$ and
- $Q(z)$ has all complex roots in the disc $|z|<\sqrt{2}$.
(Then write $\sum_{i=0}^{k} a_{i} z^{i}=Q(z)$ and use these to form $P_{n}(x)$.)
Our proof of this is computational: we find explicit examples for $m \leq 350$, then compute larger examples by keeping track of the "quality"

$$
\min \{|Q(z)|:|z| \geq \sqrt{2}\}
$$

Given enough examples of quality at least 7 , we can continue via the rule

$$
m \mapsto 15 m+c \quad(|c| \leq 7), \quad Q(z) \mapsto\left(z^{4}-1\right) Q(z)+c
$$

[^0]: * Or more precisely, on the ℓ-adic Tate module of A for any prime $\ell \nmid q$.

[^1]: "Of course the cutoff for "sufficiently large" depends on q as well as on which side conditions you add. In any case it is principle effective; with no side conditions you can realize all orders beyond $q^{3} \sqrt{q} \log q$.

[^2]: $\dagger_{\text {Sample exceptions: over }} \mathbb{F}_{3}$ and \mathbb{F}_{4} there are elliptic curves of order 1 .
 \ddagger Motivated by the class number one problem for function fields.

[^3]: $\S_{\text {By reducing to }}$ Kronecker's theorem: every algebraic integer whose complex conjugates all have norm 1 is a root of unity.

