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In the beginning: Pick’s theorem

Pick’s∗ theorem

Theorem (Pick, 1899)

Let P be a polygon in R2 with vertices at lattice points (elements of Z2).

Let V be the area of (the interior of) P.

Let I be the number of lattice points in the interior of P.

Let B be the number of lattice points on the boundary of P.

Then V = I + 1
2B − 1.

∗Pick died in a Nazi murder camp in 1942 without having received much recognition
for this theorem; it was popularized by Steinhaus in the 1960s.
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In the beginning: Pick’s theorem

A proof of Pick’s theorem (part 1)

One can reduce Pick’s theorem to the case of a triangle with no interior
lattice points: one can always dissect P into some such triangles, and both
sides of the formula are additive.
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In the beginning: Pick’s theorem

A proof of Pick’s theorem (part 2)

Let T be a lattice triangle with no interior lattice points. Using continued
fractions†, one can find a matrix in SL2(Z) which transforms T into the
standard lattice triangle with vertices

(0, 0), (0, 1), (1, 0).

Both sides of Pick’s formula are invariant under this transformation, and
the equality for the standard triangle is easy to check.

†Ultimately this means Euclid’s algorithm (300 BCE), but continued fractions don’t
appear in a “modern” form until the Āryabhat.̄ ıyam. (500 CE).
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Ehrhart polynomials

Lattice polygons (and polytopes)

A lattice point in Rn is a point with integer coordinates, i.e., an element
of Zn.

A (filled) convex lattice polytope in Rn is a region which is the convex
hull of finitely many lattice points. With a bit more effort one can also
consider nonconvex lattice polytopes, but to simplify I’ll skip this.

Kiran S. Kedlaya Beyond Pick’s theorem PROMYS, July 8, 2020 7 / 20



Ehrhart polynomials

Lattice polygons (and polytopes)

A lattice point in Rn is a point with integer coordinates, i.e., an element
of Zn.

A (filled) convex lattice polytope in Rn is a region which is the convex
hull of finitely many lattice points. With a bit more effort one can also
consider nonconvex lattice polytopes, but to simplify I’ll skip this.

Kiran S. Kedlaya Beyond Pick’s theorem PROMYS, July 8, 2020 7 / 20



Ehrhart polynomials

The Ehrhart‡ polynomial of a lattice polytope

For P a polytope in Rn and m a positive real number, define the dilation

mP = {mx : x ∈ P}.

Theorem (Ehrhart)

Let P be a convex lattice polytope in Rn. Then there exists a polynomial
LP(t) ∈ Q[t] with the property that for each nonnegative integer m,
Lp(m) equals the number of interior and boundary lattice points in mP. In
particular, LP(0) = 1.

Assuming that P has positive volume in Rn (i.e., it is not contained in a
lower-dimensional affine space), LP(t) has degree n and its leading
coefficient is the volume of P.

‡Eugène Ehrhart worked as a high school teacher in France and engaged in research
mathematics in his free time. He published a series of articles about lattice polytopes in
the mid-1960s. Only later did he receive his PhD thesis, at the age of 60!
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Ehrhart polynomials

The Ehrhart reciprocity law

Theorem (Ehrhart)

Let P be a convex lattice polytope in Rn with positive volume. Then for
the same polynomial Lp(t), for each positive integer m, (−1)nLp(−m)
equals the number of interior only lattice points in mP.

This “lifts” to a deeper statement in algebraic geometry (Serre duality for
toric varieties). By the same token, many other assertions in this subject
(e.g., the formula of Pommersheim for tetrahedra) double as statements of
elementary number theory and deeper facts in algebraic geometry.
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Ehrhart polynomials

Pick’s theorem and Ehrhart polynomials

Let’s look closely at the case n = 2. For P a convex lattice polygon with
area V ,

LP(t) = Vt2 + at + 1

for some rational number a. Plugging in t = 1, t = −1 yields

LP(1) = V + a + 1 = I + B

Lp(−1) = V − a + 1 = I .

Eliminating a recovers Pick’s theorem:

V = I + 1
2B − 1.

If we instead solve for a, we find that

a = V + 1− I = 1
2B.
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Ehrhart polynomials

Coefficients of the Ehrhart polynomial

By the previous slide, we have geometric interpretations of all coefficients
of the Ehrhart polynomial when n = 2. For n ≥ 3, things are more
complicated!

For P a convex lattice polytope in Rn with positive volume V ,

LP(t) = Vtn + Btn−1 + · · ·+ 1

where B is half the sum of the volumes§ of the (n − 1)-dimensional faces
of P. But the terms · · · are more mysterious.

§These volumes have to be normalized suitably. For example, when n = 2, the
normalized volume of an edge is one less than the number of lattice points on that edge.
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Ehrhart polynomials

Ehrhart polynomial coefficients for some tetrahedra

Pommersheim (1993) computed the Ehrhart polynomial of the tetrahedron
with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c). The coefficient of t is

1
12(acb + bc

a + ab
c + (ABC)2

abc ) + 1
4(a + b + c + A + B + C )

−As( bc
ABC ,

a
BC )− Bs( ac

ABC ,
b
AC )− Cs( ab

ABC ,
c
AB )

where A = gcd(b, c),B = gcd(c , a),C = gcd(a, b) and s(p, q) is a
Dedekind sum:

s(p, q) =

q∑
i=1

L i
q MLpiq M, LxM =

{
x − bxc − 1

2 (x /∈ Z)

0 (x ∈ Z).

Such sums first appeared in the theory of modular forms. An alternate
approach to this and other Ehrhart polynomials was introduced by
Diaz–Robins.
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Intrinsic volumes of convex bodies

Minkowski sums and mixed volumes

Let P1, . . . ,Pk be convex regions in Rn (not necessarily polytopes). We
may now define the dilate λPi = {λx : x ∈ Pi} for any λ ≥ 0, not
necessarily an integer.

The Minkowski sum of P1, . . . ,Pk is the convex polytope

P1 + · · ·+ Pk = {x1 + · · ·+ xk : x1 ∈ P1, . . . , xk ∈ Pk}.

Now assume k = n. For λ1, . . . , λn ≥ 0, the volume of λ1P1 + · · ·+ λnPn

is a homogeneous polynomial of degree n in λ1, . . . , λn; the coefficient of
λ1 · · ·λn in this polynomial is called the mixed volume V (P1, . . . ,Pn).
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Intrinsic volumes of convex bodies

Quermassintegrals and intrinsic volumes

Let P be a convex region in Rn. Let Bn be the unit ball in Rn. Then for
all t ≥ 0,

V (tP + Bn) =
n∑

j=0

(
n

j

)
Wn−j(P)t j

where Wj(P) is the mixed volume of P (taken n − j times) and Bn (taken
j times). It is called the j-th quermassintegral of P.

Another normalization you might find in the literature: the j-th intrinsic
volume of P is

Vj(P) =

(
n

j

)
Wn−j(P)

V (Bn−j)
.

By taking t →∞, we see that Wn(P) = Vn(P) = V (P) is the usual
volume. Meanwhile, Vn−1(P) is half the surface area of P. Hmm...
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Okay, now what?

So what is really going on?

The fundamental question in this project is: what on earth is going on
with this analogy??? And does it suggest any geometric interpretation of
the mysterious Ehrhart polynomial coefficients?

Possibly related question: is there a sensible simultaneous generalization of
these two concepts? After all, if I go back to the equation

V (tP + Bn) =
n∑

j=0

(
n

j

)
Wn−j(P)t j

and specialize P to be a lattice polytope, then I can imagine replacing the
ball Bn with a point and replacing the usual (Lebesgue) measure on Rn

with a discrete measure concentrated on Zn; this then looks a lot like
counting lattice points.
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Okay, now what?

Mixed Ehrhart polynomials

One clue might be the definition of mixed Ehrhart polynomials
(Haase–Juhnke-Kubitzke–Sanyal–Theobald). For P1, . . . ,Pk convex lattice
polytopes in Rn, the mixed Ehrhart polynomial LP1,...,Pk

(t) has the
property that for each nonnegative integer m,

LP1,...,Pk
(m) =

∑
J⊆{1,...,k}

(−1)k−#J#(Zn ∩
∑
j∈J

mPj)

(where
∑

j∈J mPj = 0 when J = ∅). These are related to discrete mixed
volumes introduced by Bihan.

However, it feels like there is a lot more theory to be identified here!
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Okay, now what?

Positivity properties

Another way to milk this analogy is to compare positivity statements
between the discrete and continuous settings. For example, mixed volumes
are subject to the Alexandrov–Fenchel inequality

V (P1, . . . ,Pn) ≥
√
V (P1,P1,P3, . . . ,Pn)V (P2,P2,P3, . . . ,Pn).

Does this have a discrete analogue?
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Okay, now what?

Intrinsic nature of these coefficients

A theorem of Hadwiger asserts that the only “natural” measures of convex
bodies are linear combinations of the intrinsic volumes. Is there a similar
characterization of the Ehrhart polynomial coefficients? For instance, they
are invariants for scissors congruence; are they the only such invariants?
(This is true for n = 2. What about n = 3?)
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