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The torsion closure of an affine scheme

By a torsion point of the affine space SpecK [x1, . . . , xn] over a field K of
characteristic 0, we will mean a closed point underlying a geometric point
where x1, . . . , xn are all roots of unity (i.e., a torsion point of the torus
SpecK [x±1 , . . . , x

±
n ]).

Let X be a subscheme of SpecK [x1, . . . , xn]. We define the torsion
closure of X to be the reduced closed subscheme corresponding to the
Zariski closure of the set of torsion points of X .

Let I be an ideal of K [x1, . . . , xn]. The torsion closure∗ of I is the
(radical) ideal whose zero set is the torsion closure of the zero set of I .

We may also define torsion closures for ideals of K [x±1 , . . . , x
±
n ]. If I is an

ideal of K [x1, . . . , xn], its torsion closure is saturated with respect to
(x1 · · · xn) and its extension to K [x±1 , . . . , x

±
n ] is the torsion closure of

IK [x±1 , . . . , x
±
n ].

∗This is clearly an idempotent operation, so the term “closure” is appropriate.
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A structure theorem for torsion closures

Theorem (Laurent, 1984)

An integral subscheme of SpecK [x±1 , . . . , x
±
n ] is equal to its torsion closure

if and only if it is a translate of a subtorus by a torsion point.
Consequently, the torsion closure of any subscheme can be written as a
finite union of such subschemes.

Aside: the analogous statement for abelian varieties is Raynaud’s theorem
(formerly the Manin-Mumford conjecture).

Over an algebraically closed field, this says that every associated prime of
the torsion closure of an ideal is generated by binomials of the form
xe11 · · · xenn − ζ where ζ is a root of unity.

Concrete reinterpretation: given a system of polynomial equations to be
solved in roots of unity, one can always exhibit a minimal finite set of
parametric solutions. How to do this practice?
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Example: a theorem of Conway–Jones

Theorem (Conway-Jones, 1979)

Let S be a set of at most 9 roots of unity with zero sum. Suppose that S
does not contain {α,−α} or {α, ζ3α, ζ23α} for any α. Then up to
rotation, S is one of

{1, ζ5, ζ25 , ζ35 , ζ45} {−ζ3,−ζ23 , ζ5, ζ25 , ζ35 , ζ45},
{1, ζ7, ζ27 , ζ37 , ζ47 , ζ57 , ζ67}, {1, ζ5, ζ45 ,−ζ3ζ25 ,−ζ23ζ25 ,−ζ3ζ35 ,−ζ23ζ35},

{−ζ3,−ζ23 , ζ7, ζ27 , ζ37 , ζ47 , ζ57 , ζ67},
{ζ5, ζ45 ,−ζ3,−ζ23 ,−ζ3ζ25 ,−ζ23ζ25 ,−ζ3ζ35 ,−ζ23ζ35},
{1, ζ27 , ζ37 , ζ47 , ζ57 ,−ζ3ζ7,−ζ23ζ7,−ζ3ζ67 ,−ζ23ζ67},

{1,−ζ3ζ5,−ζ23ζ5,−ζ3ζ25 ,−ζ3ζ25 ,−ζ3ζ35 ,−ζ23ζ35 ,−ζ3ζ45 ,−ζ23ζ45}.

This improves a similar result of W lodarski, by providing a technique for
resolving similar problems for any fixed number of roots of unity.
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Applications of Conway–Jones

A literature search turns up applications of Conway–Jones in areas such as:

Euclidean and non-Euclidean geometry;

operator algebras;

representation theory of finite groups;

Kähler geometry;

knot theory;

dynamical systems;

graph theory;

and more.
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Ingredients of the Conway–Jones theorem

The key lemma of Conway–Jones is the following.

Lemma (Conway–Jones)

Let S be a (multi)set of roots of unity with zero sum, which is minimal:
no nonempty proper (multi)subset of S sums to zero.

(a) There exists a rotation of S consisting of roots of unity of squarefree
order.

(b) Let N be the minimal integer for which S admits a rotation consisting
of N-th roots of unity. Then

#S ≥ 2 +
∑
p|N

(p − 2).

Both statements follow from basic facts about cyclotomic fields.
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An algorithm for computing torsion closures

The Conway-Jones lemma can in principle be used to classify minimal
additive relations among any number of roots of unity, and hence to give
an algorithm to compute torsion closures (Leroux).

However, this does not seem to be feasible in practice except in very
simple cases. The record extension of the Conway-Jones classification is
for 12 roots of unity (Poonen–Rubinstein, 1998).
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Another algorithm for computing torsion closures

An approach more in the spirit of computational commutative algebra is
suggested by papers of Beukers–Smyth and Aliev–Smyth.

Lemma (Beukers–Smyth, 2000)

Let I be a maximal ideal of Q[x1, . . . , xn] whose zero set is a torsion point.

(a) If the torsion order is divisible by 4, then there exists

f : Q[x1, . . . , xn] 7→ Q[x1, . . . , xn], f (xi ) = (−1)ei xi (ei ∈ {0, 1})

such that f (I ) ⊆ I .

(b) If the torsion order is odda, then the homomorphism

f : Q[x1, . . . , xn] 7→ Q[x1, . . . , xn], f (xi ) = x2i

has the property that f (I ) ⊆ I .

aIf the order is 2 mod 4, apply some map as in (a) to get an odd-order point.
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A hybrid algorithm

The algorithm derived from Aliev–Beukers–Smyth is quite practical for
n = 2, but seems infeasible even for simple examples with n = 3. We gain
some extra ground by combining with Conway–Jones, or more precisely a
mod-2 variant suggested by Poonen; this seems to work better for n = 3.

Motivating problem (joint work with Kolpakov–Poonen–Rubinstein):
which tetrahedra in R3 have all six dihedral angles being rational multiples
of π? This is a six-variable problem, but mod-2 considerations reduce it to
a large collection of three-variable problems.
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An implementation in Sage

I have a satisfactory (for this problem) implementation of the hybrid
approach in Sage. It uses:

Singular for the underlying commutative algebra (Gröbner bases, ideal
membership testing, saturation, associated primes);

Pari for arithmetic on univariate polynomials over cyclotomic fields;

Cython for a few low-level steps (e.g., making toric changes of
coordinates on a Laurent polynomial ring).
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Some issues that arose: Laurent polynomials

Ideals in Laurent polynomial rings are not implemented! I developed
an ad hoc approach, but some further thought is required (see trac
#29512). In particular, ideals in Laurent polynomial rings correspond
to saturated ideals in ordinary polynomial rings, but saturation can be
quite expensive; it is useful to postpone it when possible.

Profiling suggests that element creation for Laurent polynomials is
rather inefficient compared to ordinary polynomials.

Just as for ordinary polynomials, there is a distinction between a
univariate Laurent polynomial ring and a multivariate Laurent
polynomial ring which happens to have only one generator. Fair
enough, but the latter sometimes spontaneously changes into the
former (e.g., when calling change ring).

There is plenty more missing parallelism between ordinary and
Laurent polynomials (see trac #29474, #29688, and more to follow).
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quite expensive; it is useful to postpone it when possible.

Profiling suggests that element creation for Laurent polynomials is
rather inefficient compared to ordinary polynomials.
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Some issues that arose: cyclotomic fields

This algorithm ends up doing computations over cyclotomic fields.
Coercions between cyclotomic fields are broken: if K1 ⊂ K2 is a proper
inclusion (and K1 6= Q), then elements of K1 coerce into K2, but
elements in the image do not coerce back into K1 (see trac #29511).

Univariate polynomial arithmetic over a large cyclotomic field is a
severe bottleneck. Can Nemo help? This might mean porting the
whole algorithm over to Julia using Singular.jl, but this should be
doable.
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