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Zeta and L-functions

Zeta functions of algebraic varieties

For X an algebraic variety over a finite field Fq, the zeta function of X is

Z (X ,T ) =
∏
x∈X◦

(1− T deg(x/Fq))−1 = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

where X ◦ denotes the set of closed points of X . This is a rational function
of T each of whose zeroes and poles in C has absolute value q−i/2 for
some i ∈ {0, . . . , 2 dim(X )}.

For example, if X is an elliptic curve, then

Z (X ,T ) =
1− aT + qT 2

(1− T )(1− qT )

where a ∈ Z ∩ [−2
√
q, 2
√
q] (Hasse’s bound). The poles are at

T = q−0/2, q−2/2 and the zeroes have absolute value q−1/2.
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Zeta and L-functions

L-functions of algebraic varieties

For X a smooth proper variety over a number field K , its i-th L-function is
a certain Euler product Li (X , s) =

∏
p Lp(X ,Norm(p)−s)−1 ranging over

prime ideals of oK . For p at which X has good reduction, Lp(X ,T ) is the
polynomial with constant term 1 whose roots are the zeroes/poles of
Z (Xp,T ) of absolute value Norm(p)−i/2.

It is expected that Li (X , s) admits a meromorphic continuation to C with
functional equation relating s to i + 1− s, but when this is known it is
often a deep theorem (e.g., modularity of elliptic curves).

It is further expected that Li (X , s) has all of its zeroes on the line
Real(s) = i+1

2 , but this is not known for any X . This question includes
the Riemann hypothesis because

L0(Spec(Q), s) =
∏
p

(1− p−s)−1 =
∞∑
n=1

n−s = ζ(s).
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Zeta and L-functions

Overview of the talk

This talk has two main goals.

To survey some examples of questions arising from arithmetic and/or
algebraic geometry in which machine computation of the zeta
function or L-function associated to a algebraic variety plays (or has
the potential to play) an important role.

To give an indication of what types of computations along these lines
are feasible. We will not say much about the techniques involved,
except to mention the important role played by p-adic analytic
methods (in the style of Dwork).

As a baseline, keep in mind that one can in principle compute a zeta
function Z (X ,T ) by counting X (Fqn) for enough n (once one has a bound
on its degree as a rational function). We refer to this as the brute force
method hereafter.
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Equalities of zeta and L-functions

Equalities of zeta/L-functions

Let X ,Y be smooth projective varieties over Fq (resp. K ). Under what
conditions do the zeta functions (resp. L-functions) of X and Y coincide?

Obviously this occurs if X and Y are isomorphic, but the converse is false.
For example, if X and Y are abelian varieties, a theorem of Tate (resp.
Faltings) implies that X and Y have the same zeta function (resp. the
same L-functions) if and only if they are isogenous.

In higher dimensions, Orlov conjectures that over a finite field, if X ,Y are
derived equivalent∗ (i.e., the derived categories of coherent sheaves on X
and Y are equivalent), then Z (X ,T ) = Z (Y ,T ); this is known up to
dimension 3 (Honigs et al.). This should work similarly over a number field.

Question: are there interesting instances of Orlov’s conjecture in dimension
4? If so, it should be feasible to test them numerically for small p.

∗Even for abelian varieties, this is stronger than being isogenous; however, an abelian
variety is always derived equivalent to its dual.
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Equalities of zeta and L-functions

Modularity of L-functions: elliptic curves

For X an elliptic curve over Q, the analytic behavior of L1(X , s) is
established by equating it with the L-function associated to a cuspidal
weight-2 GL2 eigenform (Wiles, Breuil–Conrad–Diamond–Taylor).

This comparison was confirmed numerically in many cases beforehand,
especially by Cremona. His tabulation of elliptic curves over Q by
conductor (found in LMFDB) depends on this theorem for its
completeness.

The same strategy extends (partially) to elliptic curves over totally real
fields and CM fields (many authors). This also implies the Sato-Tate
conjecture for these elliptic curves, more on which later.
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Equalities of zeta and L-functions

Modularity of L-functions: beyond elliptic curves

The Langlands program predicts that L-functions associated to algebraic
varieties should also arise from automorphic forms (which again would
explain their analytic behavior).

There is a precise conjecture for abelian surfaces, checked in some
cases (Brumer–Pacetti–Poor–Tornaŕıa–Voight–Yuen, Brumer–Kramer,
Boxer–Calegari–Gee–Pilloni).

There are scattered examples of K3 surfaces and Calabi-Yau
threefolds for which the middle-degree L-functions have been matched
with GL2-modular forms (many authors).

Some of these statements depend on the Faltings–Serre criterion for
certifying an equality of two L-functions based on comparison of Euler
factors; this depends on the existence of Galois representations on both
sides. Here computing the geometric L-function is the easy part...
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Boxer–Calegari–Gee–Pilloni).

There are scattered examples of K3 surfaces and Calabi-Yau
threefolds for which the middle-degree L-functions have been matched
with GL2-modular forms (many authors).

Some of these statements depend on the Faltings–Serre criterion for
certifying an equality of two L-functions based on comparison of Euler
factors; this depends on the existence of Galois representations on both
sides. Here computing the geometric L-function is the easy part...

Kiran S. Kedlaya Computation of zeta and L-functions New York, January 11, 2019 9 / 31



Equalities of zeta and L-functions

Modularity of L-functions: beyond elliptic curves

The Langlands program predicts that L-functions associated to algebraic
varieties should also arise from automorphic forms (which again would
explain their analytic behavior).

There is a precise conjecture for abelian surfaces, checked in some
cases (Brumer–Pacetti–Poor–Tornaŕıa–Voight–Yuen, Brumer–Kramer,
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The range of the zeta function map

Abelian varieties and the Honda-Tate theorem

For X an abelian variety of dimension g over Fq, the possibilities for
Z (X ,T ) are dictated by the Honda-Tate theorem, and each one
corresponds to a unique isogeny class. These have been tabulated in
LMFDB for small g , q (Dupuy-K–Roe–Vincent).

This provides a natural intermediate step to tabulating abelian varieties
over Fq up to isomorphism. There will be a Collaboration workshop at
ICERM at the end of January to work on this.
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The range of the zeta function map

Curves

By contrast, for X a curve of genus g over Fq, the possibilities for
Z (X ,T ) are much harder to pin down (except for small g). For example,
there are extra restrictions coming from positivity conditions:

#X (Fq) ≥ 0

#X (Fqmn) ≥ #X (Fqn).

For g large compare to q, these conditions cause the Weil upper bound
#X (Fq) to be suboptimal (Ihara, Drinfeld-Vlăduţ).

Much attention has gone into studying the maximum number of Fq-points
on a curve of genus g , as this a key question in algebraic coding theory;
see https://manypoints.org.
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The range of the zeta function map

K3 surfaces

For X a K3 surface over Fq, the zeta function has the form

1

(1− T )(1− qT )(1− q2T )Qalg(T )Qtrans(T )

where Qalg(T ) has roots of the form q−1 times a root of unity, while
Qtrans(T ) has other roots of absolute value q−1.

There is no conjecture for exactly what zeta functions should occur over a
fixed Fq. However, a theorem of Taelman–Ito shows that all feasible
candidates for Qtrans(T ) occur, except that one might have to pass from
Fq to some extension to make things match up. (As in Honda-Tate, this is
proved by making analytic constructions in characteristic 0 and then
descending these to number fields.)
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The range of the zeta function map

Canvassing K3 surfaces

In order to probe the Taelman–Ito theorem, with Sutherland we found all
smooth quartic K3 surfaces over F2 and their zeta functions. There are
about 5× 105 surfaces up to PGL4-equivalence, and about 5× 104

distinct zeta functions.

This is much smaller than the number of candidate zeta functions (about
1.5× 106), but we identified about 2000 candidates which can only arise
from smooth quartics (and not any other type of K3 surfaces), and these
do all occur without any base extension required.

It may be feasible to do a similar census in some other cases:

for other types of K3 surfaces over F2;

for quartic K3 surfaces over F3 (Costa–Harvey–K, in progress);

for cubic fourfolds over F2 (Auel–Costa–K–Sutherland, in progress).
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This is much smaller than the number of candidate zeta functions (about
1.5× 106), but we identified about 2000 candidates which can only arise
from smooth quartics (and not any other type of K3 surfaces), and these
do all occur without any base extension required.

It may be feasible to do a similar census in some other cases:
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Order of vanishing

The Hodge and Tate conjectures

For X smooth proper over Fq, the pole order of Z (X ,T ) at q−1 is at least
the Néron-Severi rank (Picard number) of X . Equality is predicted by the
Tate conjecture.

This is equivalent to predicting that the generalized eigenspace F = q on
étale H2 is spanned by cycle classes (and in particular is semisimple).
Compare with the Lefschetz (1,1) theorem: for X smooth proper over C,
H2(X ,Z) ∩ H1,1 is spanned by cycle classes.

By analogy with the Hodge conjecture, one has a similar inequality and
conjecture about the pole order of Z (X ,T ) at q−i for all positive integers
i .
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Order of vanishing

The (weak) conjecture of Birch and Swinnerton-Dyer

For X an elliptic curve over K , it is conjectured that the order of vanishing
at L1(X , s) at s = 1 equals the rank of the finitely generated abelian group
X (K ). For K = Q, this is known when the order of vanishing is ≤ 1
(Gross–Zagier, Kolyvagin).

This has an awkward side effect for computations: it is not known how to
exhibit an example where the order of vanishing at s = 1 is provably any
larger than 3. Such an example would be useful for proving completeness
of tables of imaginary quadratic fields of a given class number
(Goldfeld–Watkins).

The analogous statement over a finite extension of Fq(t) is a case of the
Tate conjecture; consequently, it is known that the order of vanishing is at
least the algebraic rank.
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Order of vanishing

Specialization and Picard numbers

The Picard number does not decrease upon specialization from K to Fq.
Consequently, one can use a zeta function computation to give an upper
bound on the Picard number of a variety over either K or Fq.

The same is true for the geometric Picard number, so in principle one can
also use a zeta function computation to give an upper bound on the
Picard number of a variety over either K or Fq. There is a catch: the
geometric Picard number over Fq always has the same parity as dimH2,
whereas this is not true over K .

So for example, it is not clear how to use a zeta function computation to
check that a K3 surface over K has geometric Picard number 1. This is
possible by a method of van Luijk, more on which shortly.
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Order of vanishing

Special cubic fourfolds

Consider the moduli space of smooth cubic fourfolds in P5. A cubic
fourfold is special if it contains a surface not homologous to a complete
intersection; the special cubic fourfolds form a countable union of divisors
in the moduli space.

Ranestad–Voisin exhibited four divisors on the moduli space of smooth
cubic fourfolds in P5 which did not appear to be of this type. Confirming
this entails finding a nonspecial cubic fourfold of each of four prescribed
shapes.

Ranestad–Voisin were able to treat one of the four shapes by hand.
Addington–Auel handled two more by computing zeta functions over F2 by
a modified† brute-force method. Costa–Harvey–K handled the fourth by
computing with p-adic cohomology over Fp (with p = 31).
†A true brute-force calculation would require enumerating points on a fourfold over

F211 ; instead, one considers a certain conic fibration in which one can read off the point
counts on fibers without enumerating.
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Special values and embedded data

Special values in number theory

Starting from Dirichlet’s class number formula, many conjectures in
number theory have emerged relating special values of L-functions to
arithmetic quantities. These include:

Stark’s conjectures on units in number fields;

the strong form of the conjecture of Birch and Swinnerton-Dyer for
elliptic curves;

the Bloch–Kato Tamagawa number conjecture;

Beilinson’s conjecture on regulators in algebraic K -theory.

In some settings, there is room to make the conjectures more precise;
experimental evidence, based on computations of L-functions, may play a
role here (as it did for BSD).
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Special values and embedded data

K3 surfaces

For X a K3 surface over Fq, the Tate conjecture is known (many authors);
hence Z (X ,T ) has a pole at T = q−1 of order equal to the Picard
number. By the Artin-Tate formula, the leading coefficient is the
discriminant of the Picard lattice times the order of the Brauer group; the
latter is a perfect square.

Elsenhans–Jahnel observed that comparing the Artin-Tate formulas over
Fq and Fq2 yields a previously unknown restriction on Z (X ,T ).

van Luijk observed that if X is a K3 surface over K whose reduction to Fq

has the same Picard number, then the discriminant does not change upon
reduction. In particular, if X has two reductions with geometric Picard
number 2 whose discriminants are not in the same square class, then X
has geometric Picard number 1.

Question: can zeta/L-function computations be used to gain any effective
control over the Brauer group of a K3 surface over K?
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Distribution of Euler factors

The Chebotarev density theorem

For L/K a Galois extension of number fields with group G , if one sorts the
prime ideals of K according to their associated Frobenius conjugacy class
in G (ignoring ramified primes), each class receives a density of primes
equal to its size. That is, the Frobenius classes are equidistributed for the
image of the Haar measure on G (a/k/a the uniform measure) on the set
of conjugacy classes.

A concrete consequence of this is that if f (x) is an irreducible polynomial
over K , the distribution of shapes of the prime factorizations of its
reductions at prime ideals of K corresponds to the distribution of cycle
structures for random elements of the Galois group of f .
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Distribution of Euler factors

The Sato-Tate conjecture

For X an elliptic curve over K , write the factor of L1(X , s) for the prime
ideal pK as

(1− αq1/2−s)−1(1− βq1/2−s)−1, q = Norm(pK ).

Then α, β lie on the unit circle and are complex conjugates of each other.
As pK varies, one observes numerically that α is equidistributed for one of
three measures:

if E has CM defined over K , the uniform measure on the upper unit
semicircle;

if E has CM over a larger field, the average of the previous with a
point measure at i ;

if E has no CM, the image of Haar measure on SU(2).

The first two cases are due to Hecke. The third is the Sato-Tate
conjecture, known if K is totally real or a CM field (Taylor et al.).
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Distribution of Euler factors

Sato-Tate groups

For any‡ abelian variety X over K , one can define a compact Lie group,
the Sato-Tate group of X , and a sequence of conjugacy classes associated
to the factors of L1(X , s) in a similar fashion. These are expected to be
equidistributed for the image of Haar measure.

For example, if X is an elliptic curve, then the Sato-Tate group is:

SU(2) if E has no CM;

SO(2) if E has CM defined over K ;

the normalizer of SO(2) in SU(2) if E has CM over a larger field.
Note that this group has 2 connected components; E has ordinary
reduction at p if and only if p corresponds to a class contained in the
identity connected component.

‡Some complications ensue if the Mumford-Tate conjecture is not known for X , but
this never happens in dimensions ≤ 3.
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equidistributed for the image of Haar measure.

For example, if X is an elliptic curve, then the Sato-Tate group is:

SU(2) if E has no CM;

SO(2) if E has CM defined over K ;

the normalizer of SO(2) in SU(2) if E has CM over a larger field.
Note that this group has 2 connected components; E has ordinary
reduction at p if and only if p corresponds to a class contained in the
identity connected component.

‡Some complications ensue if the Mumford-Tate conjecture is not known for X , but
this never happens in dimensions ≤ 3.
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Distribution of Euler factors

Sato-Tate groups of abelian surfaces

Fité–K–Rotger–Sutherland classified Sato-Tate groups for abelian surfaces;
there are 52 of them, of which 34 can occur over Q. See
https://math.mit.edu/~drew/ for animations illustrating these.

The groups that do not occur over Q all occur over quadratic or
biquadratic fields. There even exists a choice of K for which all 52 groups
occur over K (Fité–Guitart).

The generic Sato-Tate group for an abelian surfaces is USp(4); for this
group, equidistribution is not known in any case (and seems out of reach
of current modularity lifting techniques). By contrast, one can prove
equidistribution in most of the exceptional cases (Johansson).
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Distribution of Euler factors

Abelian threefolds

Fité–K– Sutherland are working on the corresponding result for abelian
threefolds. There are approximately§ 400 possible Sato-Tate groups.

We have no idea how many of these groups can occur over Q. However,
Sutherland has a large database of genus 3 curves over Q of small
discriminant, for which it should be feasible to compute L-functions and
match these against the classification.

§As of this writing, the list stands at 413 groups, but this analysis is not complete.
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Fité–K– Sutherland are working on the corresponding result for abelian
threefolds. There are approximately§ 400 possible Sato-Tate groups.

We have no idea how many of these groups can occur over Q. However,
Sutherland has a large database of genus 3 curves over Q of small
discriminant, for which it should be feasible to compute L-functions and
match these against the classification.

§As of this writing, the list stands at 413 groups, but this analysis is not complete.
Kiran S. Kedlaya Computation of zeta and L-functions New York, January 11, 2019 28 / 31



Distribution of Euler factors

K3 surfaces

It would be natural to classify Sato-Tate groups for K3 surfaces, in order
to compare against numerical data coming from their L-functions (this is
feasible to gather for certain low-degree shapes of K3 surfaces). For Picard
rank ≥ 17, this basically reduces to the case of abelian surfaces.

This is closely related to classifying finite subgroups of SOn(Z) for n ≤ 21.
This is principle tractable (the maximal finite subgroups of SLn(Z) are
known in this range) but is computationally intensive; moreover, mapping
the results back to Sato-Tate groups will require some additional (human)
effort.
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Additional examples

Hypergeometric motives

One can describe many one-parameter families of L-functions associated
to generalized hypergeometric differential equations. These are sometimes
(but usually not) related to familiar classes of varieties.

These give essentially the only examples of L-functions in dimension ≥ 5
that are feasible to compute at present. This depends heavily on
specialized p-adic methods for these varieties (and on work in progress).
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