Angle ranks of abelian varieties

Joint work with Taylor Dupuy (Vermont) and David Zureick-Brown (Emory). Preprint available as arXiv:2112.02455v1.

This live whiteboard can be viewed at https://miro.com/app/board/uXjVO9Ngezk=/. Slides will also be posted afterwards at https://kskedlaya.org/slides/ and https://agstanford.com/.

This talk is **hybrid:** I am on the Stanford campus today. Join us for lunch after the talk!

The UC San Diego campus sits on unceded ancestral land of the <u>Kumeyaay Nation</u>. The Kumeyaay people continue to have an important and thriving presence in the region.

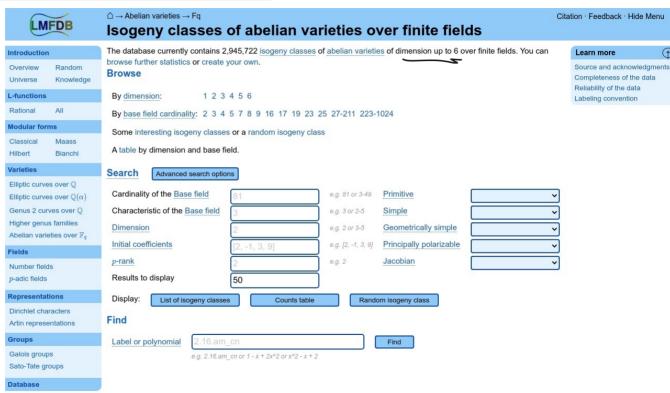
Financial support:

grants DMS-1802161, DMS-2053473 Abelian varieties over finite fields

A = abelian varieties over finite fields

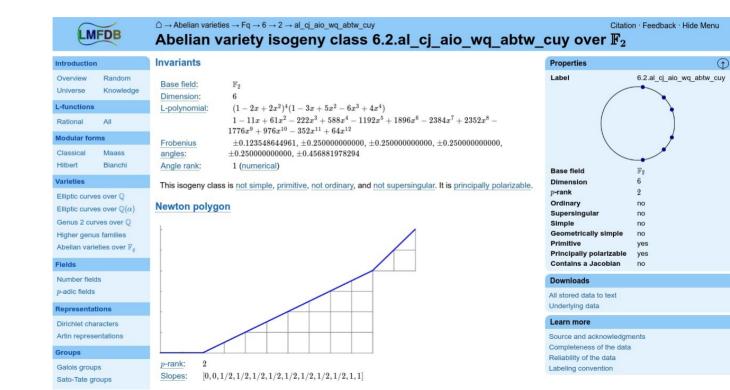
Weil polynumial = charpory (Fala, I+(A))

Weil polynumial = charpory (Fala, I+(A))


Weil polynumial = charpory (Folg, 1+(A)) T29+9, T31+ ... 297+9agn + ... + 29 1) de l'e d'i de d'il- 2/2 / ment Hordon tate theoren: "Gas, rally" a 1-1 conspondence
Lizagony dassesof (-) { 9-weil payaomia 1573

AV/IFq

Abelian varieties in the LMFDB


https://www.lmfdb.org/Variety/Abelian/Fq/

Dupuy K Roe

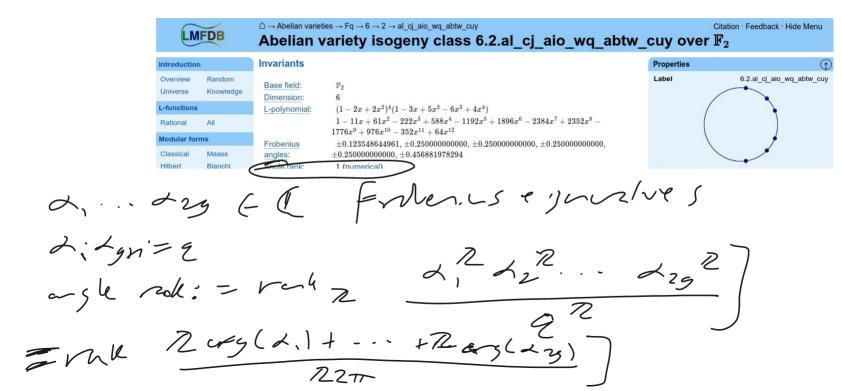
Angle ranks in the LMFDB

Data by Dupuy, Kedlaya, Roe, Vincent

The Newton polygon of an abelian variety

Then poly of partin, number of $f = p^{2}$ Never poly of f = -d, f = -d, f = -d, f = -dSo f = -d

Ordinary	no
Supersingular	no
Simple	no
Seometrically simple	no
rimitive	yes
rincipally polarizable	yes
contains a Jacobian	no


Downloads

All stored data to text Underlying data

Learn more

Source and acknowledgments Completeness of the data Reliability of the data Labeling convention

The angle rank of an abelian variety

Angle ranks and the Tate conjecture Take way: the eigenvalue e' on $H^{2i}(A)$ is entirely explained by cycle classes True for i=1 (Take) also tre to ay A for which all que eigenvales ore "severted in wheream 1" (Zarhr) engle rule = 9 [serenic]

Emple: A suspessing du (=) on se rock of

A theorem of Tankeev $g = d_{N}A$ A absolutely, we hable

from or or T_{α} $T_$ asle shot $A \in \{1, g-1, g\}$ trese em oeur

A theorem of Lenstra-Zarhin A is a most admany if its Newton polygons / = ad.m 1 m midul: (d)) (9-1,0) (9H,1) (29,9) mm (lesom-locker, 1993) IF A 15 a mosted. harry,

then { geven: cose rock = g

Godd: cose rock = g

Correct: also tope of N/ sloves war 1. lee mis "2-u/11alls"

Lovered: also tope of N/ sloves war 1. lee mis "2-u/11alls"

Slope vectors and the angle rank

VCQ9 subspace spared by Bi-di (V(Bi),...,V(Bg)) the each valuation vot (P(Bi-Pg)) above P.

1 dim V = ansle vall

G=Gal(Q(L. - , Ly)) DV acts by sized pernatural matrices.

C= code of A. "binary Inec code" 6 acts on V. (onstructs or diversors of G-vers =)

Constructs or diversors of G-vers =)

Constructs or diversors of G-vers =) (e.g. Tuleev) AGSITED To is timsiture

Effects of the code on the angle rank

Suppose Gack primitively on <1, -- 53 (generally (= 725

G - Sg)

Effects of the code on the angle rank

The (effective Zvhn) A = a 6 S sny about / Fg Am 9 For e yeurles 2.... 25 G= Gal (Q(x...-23)/42) δ= usle mul. he seented by reches of inegent at most $161(161-5)^{3}(95)^{6}$ 161 < 295!

TBD (if time permits)

Mile:

Hodse for all (Mar's over (

=) Take to all ar's over ff.

+ impowement...