## The tame Belyĭ theorem in positive characteristic

Kiran S. Kedlaya joint with Daniel Litt and Jakub Witaszek (arXiv:2010.01130)

Department of Mathematics, University of California San Diego
kedlaya@ucsd.edu
These slides are available from https://kskedlaya.org/slides/.

## Stockholm algebra/geometry seminar (virtual)

 September 22, 2021Kedlaya was supported by NSF (grant DMS-1802161 and prior), UC San Diego (Warschawski Professorship), and IAS (Visiting
Professorship). Litt and Witaszek were supported by NSF (grant DMS-1638352). Kedlaya and Witaszek also visited MSRI (NSF grant DMS-1440140).
The UC San Diego campus sits on unceded ancestral land of the Kumeyaay Nation. The Kumeyaay people continue to have an important and thriving presence in the region: https://www.kumeyaay.info.

## Riemann rigidity of three-point covers

Let $f: X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be a finite morphism of Riemann surfaces branched only over $\{0,1, \infty\}$. By a theorem of Riemann, $f$ admits no infinitesimal deformations.

If we regard $X$ as an algebraic curve, then $f$ becomes a finite morphism of curves branched only over $\{0,1, \infty\}$. The moduli space of such curves is of finite type and (by the above) of dimension 0 , so it consists of finitely many isolated (stacky) points. The action of $\operatorname{Aut}(\mathbb{C})$ must therefore act through $\operatorname{Gal}(K / \mathbb{Q})$ for some number field $K$.

## The weak Bely̌ theorem

Theorem (Bely̆̌, 1980)
Let $X$ be an algebraic curve over an algebraically closed field of characteristic 0 . Then $X$ admits a finite morphism to $\mathbb{P}^{1}$ branched only over $\{0,1, \infty\}$ if and only if $X$ admits a model over some number field.

In this statement, the "only if" statement is a consequence of Riemann rigidity. The content is the "if" statement, which can be proved in a somewhat stronger form...

A finite morphism $f$ from a curve $X$ to $\mathbb{P}^{1}$ branched only over $\{0,1, \infty\}$ is called a Belyī map on $X$. More generally, for $S$ a finite set of closed points on $X, f$ is a Belyï map on $(X, S)$ if it carries both $S$ and its branch locus into $\{0,1, \infty\}$.

## The strong Belyĭ theorem

Theorem (Bely̌̌, 1980)
Let $(X, S)$ be a marked curve over a number field $K$. Then $(X, S)$ admits a Belyı̆ map defined over K (not just over some finite extension of K).

The strategy: choose a sequence of finite morphisms $(X, S) \rightarrow\left(X^{\prime}, S^{\prime}\right)$ of marked curves such that at each step the branch locus maps into $S^{\prime}$, and at the last step the target is $\left(\mathbb{P}_{K}^{1},\{0,1, \infty\}\right)$.
We may start with any finite map $X \rightarrow \mathbb{P}_{K}^{1}$. By enlarging $S$ we may force it to be Galois-stable, and then run the rest of the argument taking $K=\mathbb{Q}$.

## The strong Belyı̆ theorem over $\mathbb{Q}$

Suppose now that $K=\mathbb{Q}, X=\mathbb{P}_{\mathbb{Q}}^{1}$, and $S$ contains exactly $n$ nonrational points $\alpha_{1}, \ldots, \alpha_{n}$. Apply the map $\mathbb{P}_{\mathbb{Q}}^{1} \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ defined by

$$
P(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) ;
$$

the only nonrational points in the new $S$ are the nonrational images of zeroes of $P^{\prime}(x)$, of which there are at most $n-1$.
By induction, we reduce to the case where $S \subseteq \mathbb{P}^{1}(\mathbb{Q})$. To treat the case $S=\left\{0,1, \frac{m}{m+n}, \infty\right\}$ with $m, n$ coprime positive integers, use the map

$$
x \mapsto \frac{(m+n)^{m+n}}{m^{m} n^{n}} x^{m}(1-x)^{n},
$$

which carries the four branch points $0,1, \frac{m}{m+n}$, $\infty$ to $0,0,1, \infty$ respectively.

## Rigidity fails in positive characteristic

Theorem
Let $X$ be a curve over any field of characteristic $p>0$. Then $X$ admits a finite morphism to $\mathbb{P}^{1}$ branched only over $\{\infty\}$.

By marking $X$ as before, we may reduce to the case $X=\mathbb{P}^{1}$. We can then choose a linearized polynomial

$$
P(x)=x^{p^{n}}+a_{1} x^{p^{n-1}}+\cdots+a_{n-1} x^{p}+a_{n} x
$$

which maps $S$ to $\{0\}$ and has branch locus $\{\infty\}$ (because $P^{\prime}(x)=a_{n}$ ).
Now note that the map

$$
x \mapsto x^{p}+x^{-1}
$$

has branch locus $\{\infty\}$ and carries $\{0, \infty\}$ to $\{\infty\}$.

## Aside: a higher-dimensional analogue

Theorem (K, 2005)
Let $X$ be a generically smooth projective variety of dimension $n$ over a field of characteristic $p>0$. Then $X$ admits a finite morphism to $\mathbb{P}^{n}$ branched only over one hyperplane.

This suggests that there is no hope to prove resolution of singularities in characteristic $p$ by studying finite morphisms to simple targets.

## Tame ramification

A finite morphism $f: X \rightarrow X^{\prime}$ of curves is tame if for each point $x \in X$, the ramification degree of $\mathcal{O}_{X^{\prime}, f(x)} \rightarrow \mathcal{O}_{X, x}$ is coprime to $p$. By Grothendieck's theory of tame fundamental groups, these maps again satisfy rigidity.

Consequently, any curve over a field of characteristic $p$ admitting a tame Belyĭ map admits a model over some finite extension of $\mathbb{F}_{p}$.

## The weak tame Belyy theorem

Theorem (Saïdi, 1997)
Let $(X, S)$ be a curve over an algebraically closed field of characteristic $p>2$. Then $(X, S)$ admits a tame Belyĭ map if and only if $(X, S)$ admits a model over some finite extension of $\mathbb{F}_{p}$.

Suppose $X$ is a curve over a finite field $k$ of characteristic $p$. A generic finite morphism $X \rightarrow \mathbb{P}^{1}$ has only simple branch points, and so is tamely ramified because $p \neq 2$. We may thus assume $X=\mathbb{P}_{k}^{1}$.

## The construction of Saïdi

Suppose now that $X=\mathbb{P}_{k}^{1}$ for some finite field $k$. The set $S$ is contained in $\{0, \infty\} \cup \mathbb{F}_{q}^{\times}$for some power $q$ of $p$. The map

$$
x \mapsto x^{q-1}
$$

is tamely ramified with branch locus $\{0, \infty\}$ and carries $S$ into $\{0,1, \infty\}$. This step does not depend on having $p \neq 2$, nor on proving the weak vs. the strong Belyĭ theorem.

## The strong Belyĭ theorem

Theorem (KLW, 2020)
Let $X$ be a curve over a finite field $k$ of characteristic $p>2$. Then $X$ admits a tame Belyĭ map defined over $k$.

By Saïdi's construction, the only issue is to produce a finite tame morphism $X \rightarrow \mathbb{P}_{k}^{1}$; because $k$ is finite, it is not enough to know that tameness is a Zariski open condition on the map.
Instead, we show that for $d \gg 0$, a random finite morphism $X \rightarrow \mathbb{P}_{k}^{1}$ of degree $d$ is tame with positive probability. This is (mostly) a consequence of Poonen's Bertini theorem over finite fields.

## Reminder: the difficulty with tame morphisms

Let $k$ be an algebraically closed field of characteristic 2 . The only obstruction to proving the weak tame Belyy theorem over $k$ is to prove that every curve $X$ over $k$ admits a finite tame morphism to $\mathbb{P}_{k}^{1}$. A generic finite morphism to $\mathbb{P}_{k}^{1}$ has only simple ramification, but double points cause wild ramification in characteristic 2.

One might guess that $X$ always admits a map to $\mathbb{P}_{k}^{1}$ with only triple ramification points. This is not known even in characteristic 0 .

This question has arithmetic nature: if we allow $k$ to be a general field of characteristic 2 , then in some cases there is no finite tame map to $\mathbb{P}_{k}^{1}$. This was shown by Schröer for a generic curve*, and by KLW for a certain genus-1 curve over the perfect closure of $\mathbb{F}_{2}(t)$.

[^0]
## A result of Sugiyama-Yasuda

Theorem (Sugiyama-Yasuda, 2019)
Let $k$ be an algebraically closed field of characteristic 2 . Let $X$ be a curve over $k$. Then $X$ admits a finite tame morphism to $\mathbb{P}_{k}^{1}$.

The argument is based ${ }^{\dagger}$ on a mod-2 analogue of the Schwarzian derivative:

$$
f(z) \mapsto\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

which vanishes precisely on Möbius transformations. More on this later.

[^1]
## The weak tame Belyy theorem

Theorem (Sugiyama-Yasuda, Anbar-Tutdere, 2019)
Let $X$ be a curve over an algebraically closed field of characteristic 2. Then $X$ admits a tame Bely̆̌ map if and only if $X$ admits a model over some finite extension of $\mathbb{F}_{2}$.

## A variation on Sugiyama-Yasuda

Theorem (KLW, 2020)
Let $k$ be a finite field of characteristic 2 . Let $X$ be a curve over $k$. Then $X$ admits a finite tame morphism to $\mathbb{P}_{k}^{1}$.

As noted above, this does not hold for any field of characteristic 2 . The proof yields, for any given curve $X$ over a perfect field $k$ of characteristic 2 , a computable (in principle) obstruction that vanishes if and only if $X$ admits a finite tame morphism to $\mathbb{P}_{k}^{1}$.

## The case of ordinary elliptic curves

Theorem (KLW, 2020)
Let $k$ be a perfect field of characteristic 2. let $X$ be the elliptic curve

$$
y^{2}+x y=x^{3}+a x^{2}+b \quad(a, b \in k ; b \neq 0)
$$

Let $\varphi: k \rightarrow k$ be the absolute Frobenius map $x \mapsto x^{2}$.
(a) If one of $a, b, a+b$ is in the image of $\varphi+1$, then $X$ does admits a finite tame morphism to $\mathbb{P}_{k}^{1}$.
(b) If $X(k)$ is torsion and none of $a, b, a+b$ is in the image of $\varphi+1$, then $X$ does not admit a finite tame morphism to $\mathbb{P}_{k}^{1}$.

Using results of Ghioca and Rössler, one can exhibit examples of elliptic curves over the perfect closure of $\mathbb{F}_{2}(t)$ to which (b) applies.

## The symbol map

Let $X$ be a curve over a perfect field of characteristic 2. Define the group $\Gamma=\mathrm{PGL}_{2}\left(k(X)^{4}\right)$; it acts freely on $k(X) \backslash k(X)^{2}$ via Möbius transformations.
The mod-2 Schwarzian derivative gives rise to a symbol map ${ }^{\ddagger}$

$$
\text { SY : }\left(k(X) \backslash k(X)^{2}\right) \times\left(k(X) \backslash k(X)^{2}\right) \rightarrow \frac{k(X)}{k(X)^{2}}
$$

such that:

- SY is symmetric and $\Gamma$-invariant in each argument;
- $\operatorname{SY}(f, g)=0$ if and only if $f$ and $g$ are Г-equivalent;
- $\operatorname{SY}(f, g)+\operatorname{SY}(g, h)=\operatorname{SY}(f, h)$.
${ }^{\ddagger}$ Our terminology, so that we can label the map SY in honor of Sugiyama-Yasuda.


## Pseudotame vs. tame morphisms

Following Sugiyama-Yasuda, we say that $f \in k(X)$ is pseudotame if at each closed point $x \in X, f$ is $\Gamma$-equivalent to a tame function ${ }^{\S}$ depending on $x$.

A tame morphism is pseudotame, but not conversely. However, following Sugiyama-Yasuda, we show that existence of a pseudotame function implies existence of a tame function.
${ }^{\S}$ We freely identify nonzero elements of $k(X)$ with finite maps from $X$ to $\mathbb{P}_{k}^{1}$.

## Tame morphisms from sections of conic bundles

Using the symbol map, we obtain a family of conic bundles on $X$ such that $X$ admits a pseudotame function iff one of the conic bundles has a section.

When $k$ is algebraically closed, every conic bundle on $X$ admits a section by Tsen's theorem. This recovers the result of Sugiyama-Yasuda.

When $k$ is finite, every conic bundle on $X$ admits a section by class field theory, specifically the Albert-Brauer-Hasse-Noether exact sequence

$$
0 \rightarrow \operatorname{Br}(k(X)) \rightarrow \bigoplus_{x \in X^{\circ}} \operatorname{Br}\left(k(X)_{x}\right) \rightarrow \mathbb{Z} \rightarrow 0
$$

This yields our claimed result, and hence the strong tame Belyı̆ theorem...

## In conclusion: the strong tame Belyy theorem

Theorem (KLW, 2020 plus previous)
Let $X$ be a curve over a finite field $k$. Then $X$ admits a tame Belyı̆ map defined over $k$.

Question: what can one say about the minimum degree of such a map?


[^0]:    *Meaning the generic fiber of the universal family over $M_{g}$ rigified with full level $N$ structure for some odd $N \geq 3$. Here $k$ is imperfect.

[^1]:    ${ }^{\dagger}$ The link with the Schwarzian derivative was only noticed in hindsight by Yuichiro Hoshi.

