
18.726: Relation between Čech and sheaf cohomology

Hartshorne proves the acyclicity of quasi-coherent sheaves on affine schemes only in the
case of a noetherian scheme; Grothendieck’s original proof admittedly uses more homological
algebra, but its underlying idea is quite nice and explicit, and even somewhat computational
(uncharacteristically so for Grothendieck!). So here goes. (Most likely, I will only explain
this in lecture for r = 2, just to keep indices under control.)

Reference: EGA III.1.1–3.

The exterior algebra complex

Let X = Spec A be an affine scheme, suppose f1, . . . , fr ∈ A generate the unit ideal, and let
{Ui = Spec Afi

}r
i=1 be the corresponding open cover of X. Write f = (f1, . . . , fr). Define the

exterior algebra complex K.(f) associated to f as follows. Take the exterior algebra ∧.(Ar)
graded in the usual fashion (so ∧0 = A,∧1 = Ar, . . . ). Now view “multiplication by f” as an
element of the dual (Ar)∨; you can then contract with it to get a map df : ∧iAr to ∧i−1Ar,
and doing it twice gives you zero. So I have a complex, modulo the fact that d goes the
wrong way. Never mind for now.

Aside: for r = 1, if you turn this around, you just have the complex 0 → A
×f→ A → 0. For

general r, you have the “tensor product” of these (i.e., you make an r-dimensional complex,
then “flatten” using carefully chosen signs). More explicit description (again, this is turned
around so that d goes the right way, so the 0-term above becomes the r-term here and so
on): in degree p ∈ {0, . . . , r}, you put tuples (ci0,...,ip) of elements of A, one for each (p + 1)-
element sequence i0 < · · · < ip in {1, . . . , r}. Under d, the tuple maps to the new tuple
whose component at the (p + 2)-element sequence j0 < · · · < jp+1 is

p+1∑
l=0

(−1)lflcj0,...,bjl,...,jp+1
.

So it looks just like a Čech complex except for that multiplication by fl.
Given g = (g1, . . . , gr) ∈ Ar, I can wedge with g (on the left, say) to get a map eg :

∧iAr → ∧i+1Ar. Exercise: this map satisfies

(dfeg + egdf )m = (f1g1 + · · ·+ frgr)m,

that being ordinary scalar multiplication on the right. In particular, multiplication by f1g1 +
· · ·+ frgr is homotopic to zero. But we assumed f1, . . . , fr generate the unit ideal, so we can
choose g1, . . . , gr so that f1g1 + · · · + frgr = 0. Conclusion: the identity map is homotopic
to zero, and likewise after applying any functor!

Direct limits

Given an A-module M , write

K .(f, M) = HomA(K .(f), M);
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this is a new complex, now with d going in the right direction, and the identity map is again
homotopic to zero, so the complex is exact.

Note that for any positive integer n, the tuple fn = (fn
1 , . . . , fn

r ) also generates the unit
ideal, so the identity map in K .(fn) is also homotopic to zero. If I now take the direct limit

C .((f), M) = lim
→

K .(fn, M)

over all n, I again get an exact complex because cohomology commutes with direct lim-
its. (The homotopy between the identity and zero dies because you can’t set it up consis-
tently, but like Pheiddipides, it does so having delivered its intended result, the exactness of
C .((f), M).)

Relation to Čech cohomology

What does this have to do with Čech cohomology?
Put F = M̃ . For h ∈ A, note that Mh = Γ(Spec Ah,F) can be thought of as the direct

limit of the system

M
×h→ M

×h→ · · · ;

that is, if we label the terms M
(0)
h , M

(1)
h , . . . , then roughly M

(i)
h corresponds to fractions of

the form m/hi for m ∈ M . (The “roughly” is because two such fractions may not be equal

in M
(i)
h but may become equal in Mh, because they become equal later in the system.)

The point is that one may canonically identify the Čech p-chains, for the covering {Ui},
with Cp+1((f), M)! (That amounts to an exercise in disentangling notation.) In other words,
the “extended Čech complex”, in which you also stick in the 0-fold intersection sections
(namely M) in degree −1, is isomorphic to the complex C .((f), M) shifted by one.

But I already know that C .((f), M) is exact, so I am led to the following conclusion.

Theorem 1 (part of EGA III.1.2.4) Let X = Spec A be an affine scheme, suppose f1, . . . , fr ∈
A generate the unit ideal, and let {Ui = Spec Afi

}r
i=1 be the corresponding open cover of X.

Then for any quasi-coherent OX-module F , the Čech cohomology groups Ȟ i({Ui},F) vanish
for i > 0.

Cleanup

That’s not yet what I want, but it’s close.

Theorem 2 Let X = Spec A be an affine scheme. Then for any quasi-coherent OX-module
F , the sheaf cohomology groups Ȟ i(X,F) vanish for i > 0.

(Consequence from last lecture: you can compute sheaf cohomology of a quasi-coherent
O-module on any separated scheme, by using a Čech complex associated to an open affine
covering. The thing you need is that the sheaf cohomology vanishes on any finite intersection
of opens in the covering, but separatedness forces that intersection to be again affine.)

How does this follow from my previous theorem? On the homework, you will prove the
following result.
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Proposition 3 Let X be a topological space, and let B be a basis of X which is closed under
finite intersections (including the empty intersection, so that X ∈ B). Let F be a sheaf of
abelian groups on X, and suppose that Ȟ i(U,F) = 0 for all U ∈ B and all i > 0, where Ȟ i

denotes the limit of Čech cohomology over all coverings. Then for all i > 0, H i(X,F) = 0.

That does it, modulo the fact that we didn’t consider all coverings of an affine scheme,
only finite ones by distinguished open affines. But these form a basis, and affine schemes
are quasi-compact, so any covering can be refined to a finite covering by distinguished open
affines. So indeed Ȟ i(U,F) = 0 for U any open affine and F quasicoherent, so we obtain
the desired conclusion. Hooray!
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