
18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)
Problem Set 8 (due Friday, April 10, in class)

Please submit nine of the following exercises, including all items marked “Required”. You
may assume that all abelian categories under consideration admit a faithful additive functor
to Ab commuting with limits and colimits (so that diagram-chasing arguments become valid).

1. (Required) Let C be an abelian category. Prove that the category of complexes with
values in C is again an abelian category.

2. (Required) Prove that an abelian group is injective if and only if it is divisible. (This
proof was sketched in class.)

3. (Required) Let T · : C1 → C2 be a cohomological functor between abelian categories,
such that T i is effaceable for each i > 0. Complete the proof that T is universal.
(Hint: to check independence from the choice of u, you may want to use a pushout
construction.)

4. Prove the acyclic resolution theorem. (Hint: break the acyclic resolution up into a
sequence of short exact sequences, and take the long exact homology sequence of each
piece.)

5. Prove that an element of ModR is projective if and only if it is a direct summand of a
free module.

6. It was stated in class that “exact functors preserve cohomology of complexes”. Write
down what this means formally and then prove it.

7. (Required) Suppose that the abelian category C admits enough injectives.

(a) Prove that any complex in nonnegative degrees admits an injective resolution.
(This is a bit ambiguous: here I mean a single complex of injectives receiving a
map from the original complex which is a quasi-isomorphism.)

(b) Prove that given any morphism f : C · → D· of complexes in nonnegative degrees,
and any injective resolution I · of C ·, there exist an injective resolution J · of D·

and a morphism I · → J · inducing f on cohomology.

8. (Required) Suppose that the abelian category C admits enough injectives. Write down
a list of all of the compatibilities one must check in order to define right derived functors
of a left exact functor F in terms of injective resolutions, but do not check them (except
for the ones handled by the previous exercise). For instance, one of these is that the
object RiF (X) is well-defined up to canonical isomorphism.

9. Let C be an abelian category.
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(a) For objects M, N in C and i > 0, consider the set of equivalence classes of short
exact sequences 0 → M → P → N → 0 under the relation that two sequences
with center terms P1, P2 are equivalent if there is a diagram

0 // M //

idM

��

P1
//

��

N //

idN

��

0

0 // M // P2
// N // 0

(this forces P1
∼= P2 by the five lemma, so this is indeed an equivalence relation).

Prove that the operation of Baer sum gives this set a group structure: given two
sequences with center terms P1, P2, let P be the quotient of P1×N P2 by the image
of the map B → P1×N P2 acting as B → P1 on the first factor and minus B → P2

on the second factor. (This is sometimes called the Yoneda extension group.)

(b) Prove that the construction in (a) is canonically isomorphic to the group Ext1(N, M).

(c) In Ab, the short exact sequence 0 → Z/pZ → P → Z/pZ → 0 can be filled in
in two ways, with Z/pZ × Z/pZ or Z/p2

Z. However, Ext1(Z/pZ, Z/pZ) ∼= Z/pZ.
Why are these two statements not contradictory?

10. Generalize the previous exercise as follows. For objects M, N in C, consider classes of
exact sequences 0 → M → Pn → · · · → P1 → N → 0. Construct the minimal equiv-
alence relation under which two sequences are equivalent if there is any commutative
diagram

0 // M //

idM

��

Pn
//

��

· · · // P1
//

��

N //

idN

��

0

0 // M // P ′

n
// · · · // P ′

1
// N // 0

but without any hypothesis on the arrows Pi → P ′

i
. (Note that you need to generate

the equivalence relation in this case; this condition itself is not symmetric.) Define
Baer sum in this case to be

0 → P ′′

n → Pn−1 ⊕ P ′

n−1 → · · · → P2 ⊕ P ′

2 → P ′′

1 → 0

where P ′′

n
is the fibred coproduct (pushout) of M → Pn and M → P ′

n
, and P ′′

1 is the
fibred product (pullback) of P1 → N and P ′

1 → N .

(a) Prove that this construction gives a group. (This includes checking that the Baer
sum respects equivalence.)

(b) Prove that this group is canonically isomorphic to Exti(M, N). (Hint: one way
to do this is to check that these groups together form an effaceable cohomolog-
ical functor. This means that given a short exact sequence 0 → N1 → N →

N2 → 0, you must interpret the connecting homomorphism δi : Exti(M, N2) →

Exti+1(M, N1) in terms of sequences.)
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11. Let G be a group. Prove that for any left Z[G]-module M , the first group cohomology
group H1(G, M) is equal to the quotient of the group of crossed homomorphisms (i.e.,
set maps f : G → M satisfying f(gh) = g(f(h)) + f(g) for all g, h ∈ G) by the
subgroup of principal crossed homomorphisms (i.e., crossed homomorphisms of the
form f(g) = g(m) − m for some m ∈ M). (You may do this either using Yoneda
extensions, or using an explicit construction of a projective resolution of Z in Mod

Z[G].
Beware that the Wikipedia explanation of the latter appears to have some typos.)

12. Prove that ModR has enough injectives as follows. Given M ∈ ModR, let M → Q be
a monomorphism of abelian groups with Q divisible. Prove that

M = HomR(R, M) → HomAb(R, M) → HomAb(R, Q)

may be viewed as a monomorphism of R-modules taking M into an injective R-module.
(We will prove a more general result later.)

13. Let R be a ring and let M be an R-module. Prove that M is flat if and only if
Tor1(R/I, M) = 0 for every finitely generated ideal I of R. (Easy corollary: if R is a
principal ideal domain, then M is flat if and only if it is torsion-free.)
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