
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
The Bombieri-Vinogradov theorem (proof) (revised 9 May 07)

In this unit, we prove the Bombieri-Vinogradov theorem, in the form stated in the pre-
vious unit.

1 Bounding character sums

For f an arithmetic function, put

Df(x;N,m) =
∑

n≤x,n≡m (mod N)

f(n) −
1

φ(N)

∑

n≤x,n∈(Z/NZ)∗

f(n);

that is, Df (x;N,m) measures the deviation between the sum of f on an arithmetic progres-
sion, and the sum on all arithmetic progressions of the same modulus. The following lemma
tells us that bounding this deviation allows us to control the sum of f twisted by a Dirichlet
character.

Lemma 1. Let f be an arithmetic function with support in {1, . . . , x}, and put |f |2 =
(
∑

n |f(n)|2)1/2. Suppose that for some ∆ ∈ (0, 1], we have

|Df(x;N,m)| ≤ x1/2∆9|f |2 (1)

whenever m ∈ (Z/NZ)∗. Then for any nonprincipal character χ of modulus r, and any

positive integer s,
∣

∣

∣

∣

∣

∣

∑

n∈(Z/sZ)∗

f(n)χ(n)

∣

∣

∣

∣

∣

∣

≤ x1/2∆3rτ(s)|f |2.

Proof. By Möbius inversion, we can write

∑

n∈(Z/sZ)∗

f(n)χ(n) =
∑

k|s

µ(k)
∑

n≡0 (k)

f(n)χ(n).

We split this sum on k at K = ∆−6. We bound the sum for each fixed k > K by Cauchy-
Schwarz; the total is thus dominated by

∑

k|s,k>K

|f |2(x/k)
1/2 ≤ |f |2x

1/2K−1/2τ(s).

For the terms k ≤ K, we write the sum as (using Möbius inversion again)

∑

k|s,k≤K

µ(k)
∑

`|k

µ(`)
∑

n∈(Z/`Z)∗

f(n)χ(n).
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We split the inside sum over classes modulo `r; on each class, we apply (1). Since we are
summing over all residue classes, and χ is nonprincipal, the main terms cancel out; the sum
is thus dominated by

|f |x1/2∆9
∑

k|s,k≤K

∑

`|k

|µ(`)|φ(`r) ≤ |f |2x
1/2∆9Kφ(r)τ(s).

Since K = ∆−6, we may add the two bounds to give the desired inequality.

Using the large sieve inequality, we obtain the following.

Theorem 2. There exists an absolute constant c > 0 with the following property. Let f
be an arithmetic function with support in {1, . . . , x} satisfying (1). Let g be an arithmetic

function with support in {1, . . . , y}, and let h = f ? g be the Dirichlet convolution. Then

∑

N≤Q

max
m∈(Z/NZ)∗

|Dh(xy;N,m)| ≤ c|f |2|g|2(∆(xy)1/2 + x1/2 + y1/2 +Q) log2 Q.

Proof. We have

Dh(xy;N, a) =
1

φ(N)

∑

χ6=χ0

χ(a)

(

∑

m

f(m)χ(m)

)(

∑

n

g(n)χ(n)

)

,

with χ running over Dirichlet characters of modulus N . Rewriting this as a sum only over
primitive characters (factoring N = rs, where r is the “primitive modulus”), and using the
fact that φ(rs) ≥ φ(r)φ(s) for all r, s, we can bound the left side of the desired inequality by

∑

s≤Q

1

φ(s)

∑

1<r≤Q

1

φ(r)

∑

χ

∣

∣

∣

∣

∣

∣

∑

(m,s)=1

f(m)χ(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(n,s)=1

g(n)χ(n)

∣

∣

∣

∣

∣

∣

, (2)

with χ now running over primitive characters of level r.
We now split the sum over r at R = ∆−1. For r ≤ R, we apply Lemma 1; those terms

are dominated by

|f ||g|y1/2∆3
∑

s≤Q

τ(s)

φ(s)

∑

r≤R

r ≤ c|f ||g|y1/2∆3R2 log2Q.

(Note: we are not doing anything to the g terms other than bounding the whole sum by
|g| and pulling it out. We apply the lemma to the f terms.) For r > R, we split the sum
further into ranges like P < r ≤ 2P and apply the multiplicative large sieve inequality in
each range. Rather, we apply it twice: once with the f sum to obtain

∑

P<r≤2P

1

φ(r)

∑

χ

∣

∣

∣

∣

∣

∣

∑

(m,s)=1

f(m)χ(m)

∣

∣

∣

∣

∣

∣

2

≤
1

P
(4P 2 + x− 1)|f |22,

2



and again with the g sum. Putting together with Cauchy-Schwarz, we get a bound

∑

P<r≤2P

1

φ(r)

∑

χ

∣

∣

∣

∣

∣

∣

∑

m∈(Z/sZ)∗

f(m)χ(m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈(Z/sZ)∗

g(n)χ(n)

∣

∣

∣

∣

∣

∣

≤
1

P
(4P 2+x)1/2(4P 2+y)1/2|f |2|g|2.

Now summing, over P = R, 2R, . . . until P > Q, we get a bound on the sum over r in (2) of

c|f |2|g|2(Q+ x1/2 + y1/2 + x1/2y1/2R−1).

(That R−1 is the reason we had to limit this argument to r large.) The sum over s throws
on another two factors of logQ, yielding the claim.

2 Proof of the theorem

We now proceed to the proof of the Bombieri-Vinogradov theorem. First, we mention an
identity of Vaughan that will be useful: for any y, z ≥ 1 and n > z,

Λ(n) =
∑

b≤y,b|n

µ(b) log
n

b
−

∑

b≤y,c≤z,bc|n

µ(b)Λ(c) +
∑

b>y,c>z,bc|n

µ(b)Λ(c). (3)

Given x, define the incomplete logarithm

λ(`) = log `−
∑

k≤x1/5,k|`

Λ(k);

then (3) with y = z = x1/5 implies that for x1/5 < n ≤ x,

Λ(n) =
∑

`m=n,m≤x1/5

λ(`)µ(m) +
∑

`m=n,x1/5<m≤x4/5

λ(`)µ(m). (4)

Let Λ0(n) and Λ1(n) denote the two sums on the right side of (4). Then

DΛ(x;N,m) = DΛ0
(x;N,m) +DΛ1

(x;N,m) +O(x1/5 log x),

with the error term coming from terms with n < x1/5.
It is straightforward to prove that

∑

N≤Q

max
m∈(Z/NZ)∗

|DΛ0
(x;N,m)| = O(Qx2/5 log x), (5)

so we concentrate on the contribution from Λ1. We want to apply Theorem 2, but we cannot
write the sum Λ1(n) as a convolution because of the restriction n ≤ x.

To get around this, we cut the interval 1 ≤ n ≤ x into O(δ−1) subintervals of the form
y < n ≤ (1 + δ)y, where x1/5 < δ ≤ 1 is a parameter we will set later. We cover the
summation range

`m = n, x1/5 < m ≤ x
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by ranges
`m = n, L < ` ≤ (1 + δ)L,M < m ≤ (1 + δ)M

with L,M taking values (1 + δ)j. We run L,M over the ranges x1/5 < L,M < x4/5 with
LM = x; the only trouble is that we do not properly cover the areas n < x1/5 and (1+δ)−1x <
n < (1 + δ)x. The contribution from the error regions is O(δN−1x log x).

What remains is the sum over L,M of

D(L,M ;N,m) =
∑

l,m≡m (mod N)

λ(`)µ(m) −
1

φ(N)

∑

lm∈(Z/NZ)∗

,

where l, m run over L < ` ≤ (1 + δ)L,M < m ≤ (1 + δ)M . For each L,M , we may
apply Theorem 2 with ∆ = (log x)−A; the hypothesis (1) is satisfied by the Siegel-Walfisz
theorem (the error bound on the prime number theorem in arithmetic progressions). If we
take Q = ∆x1/2, we get

∑

N≤Q

max
m∈(Z/NZ)∗

|D(L,M ;N,m)| = O(δ∆x(log x)3).

Summing over L,M , we obtain

∑

N≤Q

max
m∈(Z/NZ)∗

|DΛ1
(x;N,m)| = O((δ−1x + ∆)x(log x)3.

We now choose δ = ∆1/2, so this bound becomes ∆1/2x(log x)3. Adding back in (5) gives

∑

N≤∆x1/2

max
m∈(Z/NZ)∗

∣

∣

∣

∣

ψ(x;N,m) −
ψ(x)

φ(N)

∣

∣

∣

∣

= O(∆1/2x(log x)3).

Using the prime number theorem with error term, we can take ψ(x) = x+O(δx). This gives
the Bombieri-Vinogradov theorem with B(A) = 2A + 6.

3 The Barban-Davenport-Halberstam theorem

We leave the proof of the Barban-Davenport-Halberstam theorem to the reader; it is actually
somewhat simpler than Bombieri-Vinogradov. Here is the key step.

Theorem 3. There exists an absolute constant c > 0 with the following property. Let f be

an arithmetic function with support in {1, . . . , x} satisfying (1). Then

∑

N≤Q

∑

a∈(Z/NZ)∗

|Df(x;N,m)|2 ≤ c|f |2(∆x +Q)(logQ)2.

We note in passing the following corollary.
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Corollary 4. With conditions as in Theorem 2, for ab 6= 0, we have

∑

N≤Q,(ab,N)=1

∣

∣

∣

∣

∣

∣

∑

m,n:am≡bn (N),(mn,N)=1

f(m)g(n) −
1

φ(N)





∑

(m,N)=1

f(m)









∑

(n,N)=1

g(n)





∣

∣

∣

∣

∣

∣

≤ c|f ||g|(x+Q)1/2(∆y +Q)1/2 log2Q.

Exercises

1. Prove (3).

2. Use (3) to deduce (4).

3. Prove (5).

4. Prove Theorem 3, by imitating the proof of Theorem 2.

5. Deduce Corollary 4 from Theorem 3. (Hint: rewrite the difference in terms of Df and
Dg.)
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