18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
The Bombieri-Vinogradov theorem (proof) (revised 9 May 07)

In this unit, we prove the Bombieri-Vinogradov theorem, in the form stated in the pre-
vious unit.

1 Bounding character sums

For f an arithmetic function, put

Dy Nm) = Y f(n)—ﬁ S f)
n<wx,ne(Z/NZ)*

n<z,n=m (mod N)

that is, D¢(z; N, m) measures the deviation between the sum of f on an arithmetic progres-
sion, and the sum on all arithmetic progressions of the same modulus. The following lemma
tells us that bounding this deviation allows us to control the sum of f twisted by a Dirichlet
character.

Lemma 1. Let f be an arithmetic function with support in {1,...,x}, and put |f|s =
(>, 1f(n)]?)Y2. Suppose that for some A € (0,1], we have

|Dy(z; N,m)| < 2'2A° f], (1)

whenever m € (Z/NZ)*. Then for any nonprincipal character x of modulus r, and any
positive integer s,

Y fmx(n)| < zPA%T(s)|fl2.

ne(Z/sL)*

Proof. By Mobius inversion, we can write

Yo fx(n) =Y uk) Y fn)x(n).

n€e(Z/sZ)* k|s n=0 (k)

We split this sum on k at K = A™®. We bound the sum for each fixed k > K by Cauchy-
Schwarz; the total is thus dominated by

D Sl /R < | flaat PP (s).

k|s,k>K

For the terms k£ < K, we write the sum as (using Mobius inversion again)

doouk) o) Y fl)x(n).

ks, k<K 0k ne(Z/0Z)*



We split the inside sum over classes modulo ¢r; on each class, we apply (1). Since we are
summing over all residue classes, and  is nonprincipal, the main terms cancel out; the sum
is thus dominated by

Flat2A% 7 u(0)]e(er) < | flaa' P ATKg(r)T(s).

k|s,k<K (|k
Since K = A% we may add the two bounds to give the desired inequality. O
Using the large sieve inequality, we obtain the following.

Theorem 2. There exists an absolute constant ¢ > 0 with the following property. Let f
be an arithmetic function with support in {1,... z} satisfying (1). Let g be an arithmetic
function with support in {1,...,y}, and let h = f % g be the Dirichlet convolution. Then

max (wy; Nym)| < el flalgla(Azy)? +2'% + 41 + Q) log” Q.

=0 me(Z/NZ)*

Proof. We have

Dulayi V) = A Y G (zf >) (Zg(n)x(n)>,

XFX0

with y running over Dirichlet characters of modulus N. Rewriting this as a sum only over
primitive characters (factoring N = rs, where r is the “primitive modulus”), and using the
fact that ¢(rs) > ¢(r)¢(s) for all r, s, we can bound the left side of the desired inequality by

Z Z Z > fm)xm)| | > gn)x(n)|, 2)

1< <Q (m,s)=1 (n,8)=1

with x now running over primitive characters of level r.
We now split the sum over r at R = A~!. For r < R, we apply Lemma 1; those terms
are dominated by

Fllgly 288 S % S < el fllgly A R log? Q.
s<@Q

r<R

(Note: we are not doing anything to the g terms other than bounding the whole sum by
|g| and pulling it out. We apply the lemma to the f terms.) For r > R, we split the sum
further into ranges like P < r < 2P and apply the multiplicative large sieve inequality in
each range. Rather, we apply it twice: once with the f sum to obtain

2

> m5e > St < 5P+ - 1)1,

P<r<2pP X [(m,s)



and again with the g sum. Putting together with Cauchy-Schwarz, we get a bound

S Y| S fexm|| T amxm)] < S@P-) P ) gl

P<r<2P ¢( ) X |me(Z/sZ)* ne(Z/sZ)*
Now summing, over P = R, 2R, ... until P > @, we get a bound on the sum over r in (2) of
ol flalgla(Q + '/ + y'? + &Py PR,

(That R™! is the reason we had to limit this argument to r large.) The sum over s throws
on another two factors of log @), yielding the claim. O

2 Proof of the theorem

We now proceed to the proof of the Bombieri-Vinogradov theorem. First, we mention an
identity of Vaughan that will be useful: for any y, 2 > 1 and n > z,

Am) = Y- uB)logz— > uBAC+ D aBA). (3)

b<y,b|n b<y,c<z,bc|n b>y,c>z,ben

Given x, define the incomplete logarithm

MO =logl— Y A(k);

k<zl/5 k|t

then (3) with y = z = #'/° implies that for z'/° < n <z,

An)= Y MOu(m) + > A(O)p(m). (4)

tm=n,m<g!/5 tm=n,zl/5<m<zt/5

Let Ag(n) and Aj(n) denote the two sums on the right side of (4). Then
Da(x; N,m) = Dy, (z; N,m) + Da, (x; N,m) + O(z'/* log z),

with the error term coming from terms with n < /5.
It is straightforward to prove that

Dyo(z; N,m)| = O(Qz*° 1 5
<Qm£%)*| o (23 Nym)| = O(Qz™ log @), (5)

so we concentrate on the contribution from A;. We want to apply Theorem 2, but we cannot
write the sum A;(n) as a convolution because of the restriction n < .

To get around this, we cut the interval 1 < n < z into O(6~!) subintervals of the form
y < n < (1+0)y, where z'/° < § < 1 is a parameter we will set later. We cover the
summation range

1/5

m=nx’"<m<zx



by ranges
m=n,L<l<(1+0)L,M<m<(1+§M

with L, M taking values (1 + 6)7. We run L, M over the ranges z'/° < L, M < z*/° with
LM = z; the only trouble is that we do not properly cover the areas n < z/° and (1+8) 'z <
n < (1+ d)z. The contribution from the error regions is O(dN "'z log x).

What remains is the sum over L, M of

DILMNm= 3 MOum)— 3

l,m=m (mod N) ¢( )lmG(Z/NZ)*

where [,m run over L < £ < (14+0)L,M < m < (1 +§)M. For each L, M, we may
apply Theorem 2 with A = (logx)~4; the hypothesis (1) is satisfied by the Siegel-Walfisz
theorem (the error bound on the prime number theorem in arithmetic progressions). If we
take Q = Az'/?, we get

max

D(L,M;N = 3y
me(Z/NZ)* (L, M;N,m)| = O(6Az(log x)*)
N<Q

Summing over L, M, we obtain

Dy (z: N =06 'z +A)z(1 3,
N<Qmer(r21%§z)*\ (2 Nym)[ = O((07 2 + A)(log z)

We now choose § = A/2, so this bound becomes A'/2z(log 2)3. Adding back in (5) gives

$(a)
2 i, W Nom) = 5| = 0@ allog2))

Using the prime number theorem with error term, we can take ¢ (x) = z+ O(dx). This gives
the Bombieri-Vinogradov theorem with B(A) = 2A + 6.

3 The Barban-Davenport-Halberstam theorem

We leave the proof of the Barban-Davenport-Halberstam theorem to the reader; it is actually
somewhat simpler than Bombieri-Vinogradov. Here is the key step.

Theorem 3. There exists an absolute constant ¢ > 0 with the following property. Let f be
an arithmetic function with support in {1, ..., x} satisfying (1). Then

Yo > IDiaNom)? < | fF(Ar + Q)(log Q).

N<Q a€(Z/NZ)*

We note in passing the following corollary.



Corollary 4. With conditions as in Theorem 2, for ab # 0, we have

1
> > f(m)g(n)—m (m%)::lf(m) > gl

N<Q,(ab,N)=1 |m,n:am=bn (N),(mn,N)=1

< clfllgl(z + Q)*(Ay + Q) log* Q.

Exercises
1. Prove (3).
2. Use (3) to deduce (4).
3. Prove (5).
4. Prove Theorem 3, by imitating the proof of Theorem 2.

5. Deduce Corollary 4 from Theorem 3. (Hint: rewrite the difference in terms of Dy and
Dy.)



