
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Small gaps between primes (proofs)

Here are the missing calculations from the Goldston-Pintz-Yıldırım theorems. The ref-
erence is the article by Goldston et al cited in the previous unit.

1 Review of notation

Fix once and for all positive integers k, `. Let x be a parameter tending to ∞. Let H =
(h1, . . . , hk) be a k-tuple of distinct integers in the range 1, . . . , H, where H ≤ λ log x for
some fixed λ. For p prime, we set

Ω(p) = image(−H → Z/pZ)

and vH(p) = #Ω(p). Extend both of these by multiplicativity to squarefree d. We set

S(H) =
∏

p

(

1 − vH(p)

p

)(

1 − 1

p

)−k

.

For the GPY method, we set

a(n) =





∑

d|(n+h1)···(n+hk)

ρ(d)





2

for

ρ(d) = µ(d)

(

log R/d

log R

)k+`

(d ≤ R) (1)

with R ≤ x1/2/(log x)C , where C is a constant depending on k, ` to be specified later. It will
be more convenient to renormalize

ρ′(d) =
(log R)k+`

(k + `)!
ρ(d) = µ(d)

1

(k + `)!
(log R/d)k+` (d ≤ R).

2 The main calculation

Lemma 1. With notation as above, there exist c > 0 depending on k, `, such that for C
sufficiently large (depending on k, `),

∑

x<n≤2x

a(n) =
S(H)(k + `)!2

(k + 2`)!(log R)2k+2`

(

2`

`

)

x(log R)k+2` + O

(

x(log x)k+2`−1(log log x)c

(log R)2k+2`

)

.
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Proof. Expanding the square in the definition of a(n), we get the sum over d1, d2 of ρ(d1)ρ(d2)
times the number of x < n ≤ 2x with n ∈ Ω(d1), Ω(d2). That gives

∑

x<n≤2x

a(n) = x
(k + `)!2

(log R)2k+2`
T + O





(

∑

d

|vH(d)ρ(d)|
)2




T =
∑

d1,d2

vH([d1, d2])

[d1, d2]
ρ′(d1)ρ

′(d2)

since |Ω(d)| ≤ τk(d), we can replace the error term with O(R2(log R)c).
We now convert over to a problem in complex analysis, as in the first section of the

course. The key formula is

ρ′(d) =
µ(d)

2πi

∫

(1)

(R/d)s ds

sk+`+1
,

where (α) denotes the vertical contour α − i∞ → α + i∞. This gives

T =
1

(2πi)2

∫

(1)

∫

(1)

F (s1, s2,H)
Rs1+s2

(s1s2)k+`+1
ds1 ds2,

with

F (s1, s2,H) =
∑

d1,d2

µ(d1)µ(d2)
vH([d1, d2])

[d1, d2]d
s1

1 ds2

2

=
∏

p

(

1 − vH(p)

p
(p−s1 + p−s2 − p−s1−s2)

)

in the region of absolute convergence.
Now put

G(s1, s2,H) = F (s1, s2,H)

(

ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k

.

Since vH(p) = k for almost all p, this function is holomorphic and bounded for Re(s1), Re(s2) >
−c. In particular, we recover the singular series as

S(H) = G(0, 0,H).

Now note that from the Euler product expansion, we see that for min{Re(s1), Re(s2), 0} =
σ ≥ −c, we have

G(s1, s2,H) = O(exp(c(log x)−2σ log log log x)). (2)

(More specifically, we can uniformly bound the Euler products over p ≤ k2 and p > H; we
get the quoted estimate from the range k2 < p ≤ H.)
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We use (2) to truncate the infinite integral, but first we shift the contours. Put U =
exp(

√
log x). We shift the s1-contour to L1 = (log U)−1 + it, and the s2-contour to L2 =

(2 log U)−1 + it. If we now truncate to |t| ≤ U and |t| ≤ U/2, respectively, we have

T =
1

(2πi)2

∫

L2

∫

L1

G(s1, s2,H)

(

ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1 ds2

+ O(exp(−c
√

log x)).

We now shift the s1-contour again, this time to L′
1 = −(log U)−1 + it with |t| ≤ U ; we

pick up residues at s1 = 0 and s1 = −s2. Again using (2), we get

T =
1

2πi

∫

L2

(Ress1=0 + Ress1=−s2
) ds2 + O(exp(−c

√

log x)).

We wish to show that the residue at s1 = −s2 may be neglected, by rewriting it in terms of
the integral over the circle |s1+s2| = (log x)−1. In this integral, G(s1, s2, Ω) = O((log log x)c),
Rs1+s2 = O(1), ζ(s1 + s2 + 1) = O(log x). We also have

(s1ζ(s1 + 1))−1 = O((|s2| + 1)−1 log(|s2| + 2)).

Putting this together,

Ress1=−s2
≤ O

(

(log x)k−1(log log x)c

(

log(|s2| + 2)

|s2| + 1

)2k

|s2|−2`−2

)

,

so

T =
1

2πi

∫

L2

Ress1=0 ds2 + O((logx)k+`). (3)

It remains to deal with Ress1=0; note that the pole has order ` + 1. If I put

Z(s1, s2,H) = G(s1, s2,H)

(

(s1 + s2)ζ(s1 + s2 + 1)

s1ζ(s1 + 1)s2ζ(s2 + 1)

)k

,

then Z(s1, s2,H) is holomorphic near (0, 0), and

Ress1=0 =
Rs2

`!s`+1
2

(

∂

∂s1

)`

s1=0

(

Z(s1, s2,H)

(s1 + s2)k
Rs1

)

.

We now stuff this into (3) and repeat the operation: that is, we shift the s2-contour to
L′

2 : −(2 log U)−1 + it for |t| ≤ U/2. Again, the new integral is O(exp(−c
√

log x)), so all that
is left is the residue at s2 = 0. In other words,

T = Ress2=0 Ress1=0 +O((log N)k+`).

This constitutes success: we have isolated the integral at the point (0, 0), so now we will
have no trouble evaluating it.
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Fix some ρ > 0 small, let C1 be the circle |s1| = ρ, and let C2 be the circle |s2| = 2ρ.
Then

T =
1

(2πi)2

∫

C2

∫

C1

Z(s1, s2,H)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1 ds2 + O((logx)k+`).

We now change variables to s, ξ where s1 = s and s2 = sξ, over the contours C : |s| = ρ and
C ′ : |ξ| = 2. By the same argument as in the runup to (3) (applied to s), this gives

T =
Z(0, 0)

2πi(k + 2`)!
(log R)k+2`

∫

C′

(ξ + 1)2`

ξ`+1
dξ + O((log x)k+2`−1(log log x)c).

We can now read off the residue of the integrand as
(

2`
`

)

, completing the proof.

3 Twisting with primes

The second estimate proceeds mostly the same way, so I will skip most details. Note that
the translation trick from last time means we don’t have to worry about case (b): if h ∈ H
and n + h is prime, then a(n,H) = a(n,H, h).

Lemma 2. With notation as above, there exist c > 0 depending on k, `, such that for C
sufficiently large (depending on k, `), we have the following.

(a) For h /∈ H, the quantity

x

log x

∑

d1,d2≤R

ρ(d1)ρ(d2)
g([d1, d2])

φ([d1, d2])
, (4)

where g is the multiplicative function with g(p) = vH(p) − 1, equals

S(H, h)

(log R)2k+2`

(k + `)!2

(k + 2`)!

(

2`

`

)

x

log x
(log R)k+2` + O

(

x(log x)k+2`−2(log log x)c

(log R)2k+2`

)

.

(b) For h ∈ H, (4) equals

S(H)

(log R)2k+2`

(k + `)!2

(k + 2` + 1)!

(

2(` + 1)

` + 1

)

x

log x
(log R)k+2`+1+O

(

x(log x)k+2`−1(log log x)c

(log R)2k+2`

)

.

Proof. It is a bit more convenient to multiply both sides by log x, pull log x into the summand,
then replace it by Λ(n); by the prime number theorem (and the fact that I’m working in a
dyadic range), this does not affect the outcome.

In a similar fashion as above, we end up dealing with the exrpession

T ′ =
1

(2πi)2

∫

(1)

∫

(1)

∏

p

(

1 − vH,h(p) − 1

p − 1
(p−s1 + p−s2 − p−s1−s2)

)

Rs1+s2

(s1s2)k+`+1
ds1 ds2.

Everything proceeds as before unless vH,h(p) = p for some p. In that case, the Euler product
above vanishes at one of s1 = 0 or s2 = 0, to order equal to the number of primes for which
vH,h(p) = 0. But this can only happen for p ≤ k + 1, and so we can still proceed as above:
all that changes is that now the main term vanishes, consistent with S(H ∪ {h}) = 0.

4


