18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Small gaps between primes (proofs)

Here are the missing calculations from the Goldston-Pintz-Yildirim theorems. The ref-
erence is the article by Goldston et al cited in the previous unit.
1 Review of notation
Fix once and for all positive integers k, /. Let x be a parameter tending to co. Let H =

(hi,...,hx) be a k-tuple of distinct integers in the range 1,..., H, where H < Alogz for
some fixed A. For p prime, we set

Q(p) = image(—H — Z/pZ)

and vy (p) = #Q(p). Extend both of these by multiplicativity to squarefree d. We set

S0 -T] (1_ vH<p>) (1_1)"’]

» p p
For the GPY method, we set
2
a(n) = p(d)
dl(n+ha)-(n-+hy)
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o) =) (BT s m )

with R < 2'/2/(log 2)¢, where C is a constant depending on k, £ to be specified later. It will
be more convenient to renormalize

, 10 R)kJré
J(d) = ((,fpru) ~ )

(log R/d)*™  (d < R).

2 The main calculation

Lemma 1. With notation as above, there exist ¢ > 0 depending on k,l, such that for C
sufficiently large (depending on k., (),

B H)(E+0)” 20 k2 x(log z)**2~1(loglog z)¢
S o) = G gy e ¢ ) o 0 (FEETE ).

r<n<2c



Proof. Expanding the square in the definition of a( ), we get the sum over dy, dy of p(dy)p(ds)
times the number of z < n < 2z with n € Q(d;), 2(d2). That gives
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since [Q(d)| < 7x(d), we can replace the error term with O(R?(log R)®).
We now convert over to a problem in complex analysis, as in the first section of the
course. The key formula is

s =53 [ o g,
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where («) denotes the vertical contour oo — ico — « + i0o. This gives
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F(si,s0,H) = > u(dl)u(dz)%

dy,d2
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in the region of absolute convergence.
Now put

with

C(s1+1)¢(s0 + 1))’“
C(Sl +82 + 1)

Since vy (p) = k for almost all p, this function is holomorphic and bounded for Re(sy), Re(sz) >
—c. In particular, we recover the singular series as

G(Sl,SQ,H) = F(51a327H> (

S(H) = G(0,0,H).

Now note that from the Euler product expansion, we see that for min{Re(s;), Re(sy),0} =
o > —c, we have
G(s1, 52, H) = O(exp(c(log x) "> logloglog z)). (2)

(More specifically, we can uniformly bound the Euler products over p < k? and p > H; we
get the quoted estimate from the range k? < p < H.)



We use (2) to truncate the infinite integral, but first we shift the contours. Put U =
exp(v/logz). We shift the si;-contour to L; = (logU)~! + it, and the sy-contour to Ly =
(2log U)~! +it. If we now truncate to |[¢| < U and |t| < U/2, respectively, we have

1 k s1+s2
C(81+82+ ) )) ( R d81d82
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+ O(exp(—cy/log z)).

We now shift the s;-contour again, this time to L} = —(logU)~! + it with |¢| < U; we
pick up residues at s; = 0 and s; = —s5. Again using (2), we get

1
T = —/ (Ress,—0 + Ress,——g,) dsa + O(exp(—cy/log x)).
Lo
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We wish to show that the residue at s; = —s; may be neglected, by rewriting it in terms of
the integral over the circle |s;+s5| = (logz)~!. In this integral, G(s1, s2, ) = O((loglog z)°),
Rs1T52 = O(1), ((s1 + s2 + 1) = O(log x). We also have

(51¢(s1+ 1)) = O((|s2] + 1) log(|s2] + 2)).
Putting this together,
Res,,— 5, < O [ (logz)**(loglog z)* (M) |so| 7272 |,
‘82| +1

S0
1
7= —/ Res,,—o dsy + O((log 2)*). (3)
Lo
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It remains to deal with Res,,—o; note that the pole has order ¢ + 1. If T put

k
Z(s1,52, H) = G(s1,52,H) ((Sl + 52)¢(51+ 82 + 1)) |

s1¢(s1+ 1)s2C(s2 + 1)
then Z(s1, se, H) is holomorphic near (0,0), and
R#®? o\" Z(s1,52, H)
Res—o = — | =— 2 pe )
m=0 syt (981)510 ( (s1+ s2)* )

We now stuff this into (3) and repeat the operation: that is, we shift the so-contour to
Ly —(2logU)~! +it for |t| < U/2. Again, the new integral is O(exp(—cy/log x)), so all that
is left is the residue at s, = 0. In other words,

T = Res,,—o Res,,—o +O((log N)*).

This constitutes success: we have isolated the integral at the point (0,0), so now we will
have no trouble evaluating it.



Fix some p > 0 small, let C be the circle |s1| = p, and let Cy be the circle |sq| = 2p.

Then )R
/ / (1. 32’ dsy dss + O((log z)"+1).
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We now change variables to s, & where s; = s and so = s&, over the contours C' : |s| = p and
C": |€]| = 2. By the same argument as in the runup to (3) (applied to s), this gives

20
= %(log R)k+2€ /, (é.g_Tll) dé + O((log :L‘)kJr%*l(log log x)g)
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7 ), completing the proof. O

We can now read off the residue of the integrand as (

3 Twisting with primes

The second estimate proceeds mostly the same way, so I will skip most details. Note that
the translation trick from last time means we don’t have to worry about case (b): if h € H
and n + h is prime, then a(n, H) = a(n, H, h).

Lemma 2. With notation as above, there exist ¢ > 0 depending on k,{, such that for C
sufficiently large (depending on k, (), we have the following.

(a) For h ¢ H, the quantity

T 9([dy, do])
log = dl’dZﬁR P(dl)P(d2)7¢([dh b)) (4)

where g is the multiplicative function with g(p) = vy(p) — 1, equals

S(H,h) (K+0)1 20\ =z (log R} + 0 2(log )22 (log log x)°
(log R)?k+2t (k4 20)!'\ £ ) logx (log R)2+2f :

(b) For h € H, (4) equals

S(MH) __(k+OF A+ @ 0 pyerar o (2log2)™ (oglog o)
(log R)?+2¢ (k+ 20+ 1)\ (41 )logx (log R)?+2 :

Proof. 1t is a bit more convenient to multiply both sides by log x, pull log x into the summand,
then replace it by A(n); by the prime number theorem (and the fact that I'm working in a
dyadic range), this does not affect the outcome.

In a similar fashion as above, we end up dealing with the exrpession

UHh(p) L 1 —82 —51—52 Rt
s s2 . —S1—S8 dsi dso.
(27i)? / / ( —1 o1 Py b ) (s189)kteH1 o152

Everything proceeds as before unless vy p(p) = p for some p. In that case, the Euler product
above vanishes at one of s; = 0 or sy = 0, to order equal to the number of primes for which
v n(p) = 0. But this can only happen for p < k + 1, and so we can still proceed as above:
all that changes is that now the main term vanishes, consistent with S(HU {h})=0. O



