18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Small gaps between primes (proofs)

Here are the missing calculations from the Goldston-Pintz-Yıldırım theorems. The reference is the article by Goldston et al cited in the previous unit.

1 Review of notation

Fix once and for all positive integers k, ℓ. Let x be a parameter tending to ∞. Let $\mathcal{H}=$ $\left(h_{1}, \ldots, h_{k}\right)$ be a k-tuple of distinct integers in the range $1, \ldots, H$, where $H \leq \lambda \log x$ for some fixed λ. For p prime, we set

$$
\Omega(p)=\operatorname{image}(-\mathcal{H} \rightarrow \mathbb{Z} / p \mathbb{Z})
$$

and $v_{\mathcal{H}}(p)=\# \Omega(p)$. Extend both of these by multiplicativity to squarefree d. We set

$$
\mathfrak{S}(\mathcal{H})=\prod_{p}\left(1-\frac{v_{\mathcal{H}}(p)}{p}\right)\left(1-\frac{1}{p}\right)^{-k} .
$$

For the GPY method, we set

$$
a(n)=\left(\sum_{d \mid\left(n+h_{1}\right) \cdots\left(n+h_{k}\right)} \rho(d)\right)^{2}
$$

for

$$
\begin{equation*}
\rho(d)=\mu(d)\left(\frac{\log R / d}{\log R}\right)^{k+\ell} \quad(d \leq R) \tag{1}
\end{equation*}
$$

with $R \leq x^{1 / 2} /(\log x)^{C}$, where C is a constant depending on k, ℓ to be specified later. It will be more convenient to renormalize

$$
\rho^{\prime}(d)=\frac{(\log R)^{k+\ell}}{(k+\ell)!} \rho(d)=\mu(d) \frac{1}{(k+\ell)!}(\log R / d)^{k+\ell} \quad(d \leq R) .
$$

2 The main calculation

Lemma 1. With notation as above, there exist $c>0$ depending on k, ℓ, such that for C sufficiently large (depending on k, ℓ),

$$
\sum_{x<n \leq 2 x} a(n)=\frac{\mathfrak{S}(\mathcal{H})(k+\ell)!^{2}}{(k+2 \ell)!(\log R)^{2 k+2 \ell}}\binom{2 \ell}{\ell} x(\log R)^{k+2 \ell}+O\left(\frac{x(\log x)^{k+2 \ell-1}(\log \log x)^{c}}{(\log R)^{2 k+2 \ell}}\right)
$$

Proof. Expanding the square in the definition of $a(n)$, we get the sum over d_{1}, d_{2} of $\rho\left(d_{1}\right) \rho\left(d_{2}\right)$ times the number of $x<n \leq 2 x$ with $n \in \Omega\left(d_{1}\right), \Omega\left(d_{2}\right)$. That gives

$$
\begin{aligned}
\sum_{x<n \leq 2 x} a(n) & =x \frac{(k+\ell)!^{2}}{(\log R)^{2 k+2 \ell}} \mathcal{T}+O\left(\left(\sum_{d}\left|v_{\mathcal{H}}(d) \rho(d)\right|\right)^{2}\right) \\
\mathcal{T} & =\sum_{d_{1}, d_{2}} \frac{v_{\mathcal{H}}\left(\left[d_{1}, d_{2}\right]\right)}{\left[d_{1}, d_{2}\right]} \rho^{\prime}\left(d_{1}\right) \rho^{\prime}\left(d_{2}\right)
\end{aligned}
$$

since $|\Omega(d)| \leq \tau_{k}(d)$, we can replace the error term with $O\left(R^{2}(\log R)^{c}\right)$.
We now convert over to a problem in complex analysis, as in the first section of the course. The key formula is

$$
\rho^{\prime}(d)=\frac{\mu(d)}{2 \pi i} \int_{(1)}(R / d)^{s} \frac{d s}{s^{k+\ell+1}}
$$

where (α) denotes the vertical contour $\alpha-i \infty \rightarrow \alpha+i \infty$. This gives

$$
\mathcal{T}=\frac{1}{(2 \pi i)^{2}} \int_{(1)} \int_{(1)} F\left(s_{1}, s_{2}, \mathcal{H}\right) \frac{R^{s_{1}+s_{2}}}{\left(s_{1} s_{2}\right)^{k+\ell+1}} d s_{1} d s_{2}
$$

with

$$
\begin{aligned}
F\left(s_{1}, s_{2}, \mathcal{H}\right) & =\sum_{d_{1}, d_{2}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \frac{v_{\mathcal{H}}\left(\left[d_{1}, d_{2}\right]\right)}{\left[d_{1}, d_{2}\right] d_{1}^{s_{1}} d_{2}^{s_{2}}} \\
& =\prod_{p}\left(1-\frac{v_{\mathcal{H}}(p)}{p}\left(p^{-s_{1}}+p^{-s_{2}}-p^{-s_{1}-s_{2}}\right)\right)
\end{aligned}
$$

in the region of absolute convergence.
Now put

$$
G\left(s_{1}, s_{2}, \mathcal{H}\right)=F\left(s_{1}, s_{2}, \mathcal{H}\right)\left(\frac{\zeta\left(s_{1}+1\right) \zeta\left(s_{2}+1\right)}{\zeta\left(s_{1}+s_{2}+1\right)}\right)^{k}
$$

Since $v_{\mathcal{H}}(p)=k$ for almost all p, this function is holomorphic and bounded for $\operatorname{Re}\left(s_{1}\right), \operatorname{Re}\left(s_{2}\right)>$ $-c$. In particular, we recover the singular series as

$$
\mathfrak{S}(\mathcal{H})=G(0,0, \mathcal{H})
$$

Now note that from the Euler product expansion, we see that for $\min \left\{\operatorname{Re}\left(s_{1}\right), \operatorname{Re}\left(s_{2}\right), 0\right\}=$ $\sigma \geq-c$, we have

$$
\begin{equation*}
G\left(s_{1}, s_{2}, \mathcal{H}\right)=O\left(\exp \left(c(\log x)^{-2 \sigma} \log \log \log x\right)\right) \tag{2}
\end{equation*}
$$

(More specifically, we can uniformly bound the Euler products over $p \leq k^{2}$ and $p>H$; we get the quoted estimate from the range $k^{2}<p \leq H$.)

We use (2) to truncate the infinite integral, but first we shift the contours. Put $U=$ $\exp (\sqrt{\log x})$. We shift the s_{1}-contour to $L_{1}=(\log U)^{-1}+i t$, and the s_{2}-contour to $L_{2}=$ $(2 \log U)^{-1}+i t$. If we now truncate to $|t| \leq U$ and $|t| \leq U / 2$, respectively, we have

$$
\begin{aligned}
\mathcal{T} & =\frac{1}{(2 \pi i)^{2}} \int_{L_{2}} \int_{L_{1}} G\left(s_{1}, s_{2}, \mathcal{H}\right)\left(\frac{\zeta\left(s_{1}+s_{2}+1\right)}{\zeta\left(s_{1}+1\right) \zeta\left(s_{2}+1\right)}\right)^{k} \frac{R^{s_{1}+s_{2}}}{\left(s_{1} s_{2}\right)^{k+\ell+1}} d s_{1} d s_{2} \\
& +O(\exp (-c \sqrt{\log x}))
\end{aligned}
$$

We now shift the s_{1}-contour again, this time to $L_{1}^{\prime}=-(\log U)^{-1}+i t$ with $|t| \leq U$; we pick up residues at $s_{1}=0$ and $s_{1}=-s_{2}$. Again using (2), we get

$$
\mathcal{T}=\frac{1}{2 \pi i} \int_{L_{2}}\left(\operatorname{Res}_{s_{1}=0}+\operatorname{Res}_{s_{1}=-s_{2}}\right) d s_{2}+O(\exp (-c \sqrt{\log x}))
$$

We wish to show that the residue at $s_{1}=-s_{2}$ may be neglected, by rewriting it in terms of the integral over the circle $\left|s_{1}+s_{2}\right|=(\log x)^{-1}$. In this integral, $G\left(s_{1}, s_{2}, \Omega\right)=O\left((\log \log x)^{c}\right)$, $R^{s_{1}+s_{2}}=O(1), \zeta\left(s_{1}+s_{2}+1\right)=O(\log x)$. We also have

$$
\left(s_{1} \zeta\left(s_{1}+1\right)\right)^{-1}=O\left(\left(\left|s_{2}\right|+1\right)^{-1} \log \left(\left|s_{2}\right|+2\right)\right)
$$

Putting this together,

$$
\operatorname{Res}_{s_{1}=-s_{2}} \leq O\left((\log x)^{k-1}(\log \log x)^{c}\left(\frac{\log \left(\left|s_{2}\right|+2\right)}{\left|s_{2}\right|+1}\right)^{2 k}\left|s_{2}\right|^{-2 \ell-2}\right),
$$

so

$$
\begin{equation*}
\mathcal{T}=\frac{1}{2 \pi i} \int_{L_{2}} \operatorname{Res}_{s_{1}=0} d s_{2}+O\left((\log x)^{k+\ell}\right) \tag{3}
\end{equation*}
$$

It remains to deal with $\operatorname{Res}_{s_{1}=0}$; note that the pole has order $\ell+1$. If I put

$$
Z\left(s_{1}, s_{2}, \mathcal{H}\right)=G\left(s_{1}, s_{2}, \mathcal{H}\right)\left(\frac{\left(s_{1}+s_{2}\right) \zeta\left(s_{1}+s_{2}+1\right)}{s_{1} \zeta\left(s_{1}+1\right) s_{2} \zeta\left(s_{2}+1\right)}\right)^{k}
$$

then $Z\left(s_{1}, s_{2}, \mathcal{H}\right)$ is holomorphic near $(0,0)$, and

$$
\operatorname{Res}_{s_{1}=0}=\frac{R^{s_{2}}}{\ell!s_{2}^{\ell+1}}\left(\frac{\partial}{\partial s_{1}}\right)_{s_{1}=0}^{\ell}\left(\frac{Z\left(s_{1}, s_{2}, \mathcal{H}\right)}{\left(s_{1}+s_{2}\right)^{k}} R^{s_{1}}\right) .
$$

We now stuff this into (3) and repeat the operation: that is, we shift the s_{2}-contour to $L_{2}^{\prime}:-(2 \log U)^{-1}+i t$ for $|t| \leq U / 2$. Again, the new integral is $O(\exp (-c \sqrt{\log x}))$, so all that is left is the residue at $s_{2}=0$. In other words,

$$
\mathcal{T}=\operatorname{Res}_{s_{2}=0} \operatorname{Res}_{s_{1}=0}+O\left((\log N)^{k+\ell}\right)
$$

This constitutes success: we have isolated the integral at the point $(0,0)$, so now we will have no trouble evaluating it.

Fix some $\rho>0$ small, let C_{1} be the circle $\left|s_{1}\right|=\rho$, and let C_{2} be the circle $\left|s_{2}\right|=2 \rho$. Then

$$
\mathcal{T}=\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} \frac{Z\left(s_{1}, s_{2}, \mathcal{H}\right) R^{s_{1}+s_{2}}}{\left(s_{1}+s_{2}\right)^{k}\left(s_{1} s_{2}\right)^{\ell+1}} d s_{1} d s_{2}+O\left((\log x)^{k+\ell}\right)
$$

We now change variables to s, ξ where $s_{1}=s$ and $s_{2}=s \xi$, over the contours $C:|s|=\rho$ and $C^{\prime}:|\xi|=2$. By the same argument as in the runup to (3) (applied to s), this gives

$$
\mathcal{T}=\frac{Z(0,0)}{2 \pi i(k+2 \ell)!}(\log R)^{k+2 \ell} \int_{C^{\prime}} \frac{(\xi+1)^{2 \ell}}{\xi^{\ell+1}} d \xi+O\left((\log x)^{k+2 \ell-1}(\log \log x)^{c}\right) .
$$

We can now read off the residue of the integrand as $\binom{2 \ell}{\ell}$, completing the proof.

3 Twisting with primes

The second estimate proceeds mostly the same way, so I will skip most details. Note that the translation trick from last time means we don't have to worry about case (b): if $h \in \mathcal{H}$ and $n+h$ is prime, then $a(n, \mathcal{H})=a(n, \mathcal{H}, h)$.
Lemma 2. With notation as above, there exist $c>0$ depending on k, ℓ, such that for C sufficiently large (depending on k, ℓ), we have the following.
(a) For $h \notin \mathcal{H}$, the quantity

$$
\begin{equation*}
\frac{x}{\log x} \sum_{d_{1}, d_{2} \leq R} \rho\left(d_{1}\right) \rho\left(d_{2}\right) \frac{g\left(\left[d_{1}, d_{2}\right]\right)}{\phi\left(\left[d_{1}, d_{2}\right]\right)}, \tag{4}
\end{equation*}
$$

where g is the multiplicative function with $g(p)=v_{\mathcal{H}}(p)-1$, equals

$$
\frac{\mathfrak{S}(\mathcal{H}, h)}{(\log R)^{2 k+2 \ell}} \frac{(k+\ell)!^{2}}{(k+2 \ell)!}\binom{2 \ell}{\ell} \frac{x}{\log x}(\log R)^{k+2 \ell}+O\left(\frac{x(\log x)^{k+2 \ell-2}(\log \log x)^{c}}{(\log R)^{2 k+2 \ell}}\right) .
$$

(b) For $h \in \mathcal{H}$, (4) equals

$$
\frac{\mathfrak{S}(\mathcal{H})}{(\log R)^{2 k+2 \ell}} \frac{(k+\ell)!^{2}}{(k+2 \ell+1)!}\binom{2(\ell+1)}{\ell+1} \frac{x}{\log x}(\log R)^{k+2 \ell+1}+O\left(\frac{x(\log x)^{k+2 \ell-1}(\log \log x)^{c}}{(\log R)^{2 k+2 \ell}}\right) .
$$

Proof. It is a bit more convenient to multiply both sides by $\log x$, pull $\log x$ into the summand, then replace it by $\Lambda(n)$; by the prime number theorem (and the fact that I'm working in a dyadic range), this does not affect the outcome.

In a similar fashion as above, we end up dealing with the exrpession

$$
\mathcal{T}^{\prime}=\frac{1}{(2 \pi i)^{2}} \int_{(1)} \int_{(1)} \prod_{p}\left(1-\frac{v_{\mathcal{H}, h}(p)-1}{p-1}\left(p^{-s_{1}}+p^{-s_{2}}-p^{-s_{1}-s_{2}}\right)\right) \frac{R^{s_{1}+s_{2}}}{\left(s_{1} s_{2}\right)^{k+\ell+1}} d s_{1} d s_{2}
$$

Everything proceeds as before unless $v_{\mathcal{H}, h}(p)=p$ for some p. In that case, the Euler product above vanishes at one of $s_{1}=0$ or $s_{2}=0$, to order equal to the number of primes for which $v_{\mathcal{H}, h}(p)=0$. But this can only happen for $p \leq k+1$, and so we can still proceed as above: all that changes is that now the main term vanishes, consistent with $\mathfrak{S}(\mathcal{H} \cup\{h\})=0$.

