18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
A multiplicative large sieve inequality

In this unit, we convert the additive large sieve inequality from the previous unit, which
concerned characters of the additive group, into a result about Dirichlet characters.

1 Review of the additive large sieve

The additive large sieve inequality from last time stated the following.

Theorem 1. Fiz § € (0,1/2]. Let S C R be a d-spaced set (necessarily finite). Then for
any a, € C for M <n < M + N,
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We will need in particular the special case
S={a/q:1<¢<Q,0<a<qgedaq) =1}
Note that if a/q,a’/q" € S are distinct and m € Z, then
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That is, S is d-spaced for § = Q2. We thus obtain the following from the large sieve
inequality.

Theorem 2. Let N be a positive integer, and choose a, € C for M <n < M + N. Then
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2 The Bombieri-Davenport inequality

We now ask the question: what if we replace the exponentials in the large sieve by the
primitive Dirichlet characters of all moduli ¢ < Q)7

Theorem 3 (Bombieri-Davenport). Fiz positive integers Q, N. For any a, € C for M <
n <M+ N, we have
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One can prove a stronger inequality in which you allow also some terms corresponding
to imprimitive characters, but I won’t need this.

Proof. As in the proof of the functional equation for Dirichlet L-functions, we use the ex-
pansion of primitive Dirichlet characters in terms of Gauss sums:

x(n) =7(x)"" Y X(a)exp(2rian/q),

a€Z/qL

where

T(X) = > x(b)exp(2mib/q)

beZ/qZ

has the property that

Tl = v

If we put
S(a) = Z a, exp(2mian),
M<n<M+N
we can then write
) 2
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W) Z apx(n)| = W) Z x(a)S(a/q)
q M<n<M+N q a€Z/qZ

Summing over 1 < ¢ < @ and x primitive gives the left side of (1). I can get an upper bound
by summing over 1 < ¢ < () and all x, primitive or not. By orthogonality of characters for
the group (Z/qZ)*, this yields
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as an upper bound for the left side of (1). Applying Theorem 2 gives the right side of (1),
completing the proof. O

3 An application of the large sieve

We will use the large sieve crucially in the Bombieri-Vinogradov theorem, but first let us
illustrate its use with one of its original applications, due to Linnik.

The setup here is as in the sieve of Eratosthenes: I have a sequence of complex numbers
a, with finite support, a set of primes P, and for each p € P, I wish to exclude a set of
residue classes €2, of size w(p). That is, I wish to compute Z, the sum of a, over thoes n
which do not reduce to a class in Q, for any p € P. However, I'm not going to require w(p)
to be as small as I did before; that’s what makes this a “large sieve”.



Theorem 4. Suppose the support of a,, belongs to an interval of length N, and that w(p) < p
for allp € P. Let h be the multiplicative function with h(q) = 0 for q not squarefree and

Then for any Q@ > 1,
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where H is the sum of h(q) over ¢ < Q squarefree. In particular, if a, € {0,1} for all n,
then
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The proof will be immediate from Theorem 3 plus the following lemma (summed over q).

Lemma 5. Put S(a) =), a,exp(2mian). For any positive squarefree integer q,
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Proof. We first reduce to the case where ¢ is prime. Suppose ¢ = ¢1¢2 and we know the
desired result for both ¢; and ¢,. By the Chinese remainder theorem,
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> h(q)h(a2)[S(0)]* = h(q)|S(0) .
It remains to prove the case where ¢ is prime; we leave this case as an exercise. O

Here is Linnik’s application of the large sieve. For p prime, let ¢(p) be the least positive
integer which is not a quadratic residue modulo p. It is conjectured that ¢(p) = O(p°) for
any € > 0, but unconditionally this is only known for € > e~1/2/4 = 0.152. On the other
hand, under GRH, one can do much better: one proves ¢(p) = O(log” p).

Theorem 6 (Linnik). For any fized € > 0, there exists ¢ = c(€) such that for any N, there
are at most ¢ primes p < N such that q(p) > N¢.

Proof. For convenience, we will prove instead that for some ¢ = ¢(€), for any N there are
at most ¢ primes p < VN with ¢(p) > N¢. Let P be the set of primes p < v/ N such that

<%) =1 for all n < N¢, and let ©, be the classes of quadratic nonresidues mod p. (This is
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indeed a large sieve, because w(p) = (p —1)/2, 50 h(p) = (p—1)/(p+1) ~ 1/2 as p — oo,
whereas in our earlier examples w(p) was bounded.)

We will now sieve on the set {1,..., N}, ie., take a, = 1for 1 <n < N and a, =0
otherwise. The resulting sifted set includes all n < N with no prime divisors greater than
Ne¢: if we let Z. be the number of these, then Theorem 4 applied with @ = v/N yields
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On the other hand, if we let X. be the number of primes p < /N with ¢(p) > N¢, then
because h(p) > 1/3 for all p,

1
p<VN,q(p)>Nc¢

Hence X.Z. < 6N.

To conclude, we need to show that Z, > ¢N for some ¢ > 0. In fact it can be shown
that Z, ~ ¢N for some N, but as we don’t care about the particular constant, it will suffice
to exhibit a special class of numbers being counted by Z, which are sufficiently numerous.
Namely, take n = mpy - pr. < N with N < p; < Neforj=1,....,k=¢"'; then
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completing the proof. O

Exercises

1. Prove the following multivariate version of the additive large sieve inequality (but
without optimizing the constant). Fix 6 > 0 and d > 1, and let oy; = (v 1,...,4) €
R?/7Z% be points which are d-spaced, in the sense that the distance from each «v;  — ;&
to the nearest integer is at least § (whenever i # j and 1 < k < d). Prove that there
exists ¢ = ¢(d) (independent of § and the «;) such that for any a,, € C with n running
over {1,...,N}%
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2. Prove directly (by expanding the squares) that if we take take all characters, not just
the primitive ones, of a single modulus ¢, then the large sieve inequality holds with the
constant ¢ + N. (This is not very useful in practice.)

3. Prove Lemma 5 in the case that ¢ is prime. (Hint: there is no loss of generality in
assuming that there is at most one n in each residue class modulo p, and none in the
classes in €, such that a, # 0. Then use orthogonality of characters on Z/qZ.)



