1 Equidistribution on compact groups

Let X be a compact topological space. Let $C(X)$ be the space of continuous functions $X \to \mathbb{C}$; this is a Banach space under the supremum norm. Let μ be a measure on X, i.e., a continuous linear map $C(X) \to \mathbb{C}$ which is nonnegative (i.e., the integral of a function taking nonnegative real values is nonnegative) and of total measure 1.

A sequence x_1, x_2, \ldots of elements of X is equidistributed with respect to μ if for any continuous function f,

$$\int_X f \, d\mu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i).$$

2 Topological groups

The key example for us is when X is a compact Lie group (e.g., a finite group), and K is the space of conjugacy classes of X (viewed with the quotient topology from G). In this case, K has a unique translation-invariant measure with total measure 1, called the Haar measure; we use this measure on X and on K.

Theorem 1 (Peter-Weyl). With notation as above, the sequence x_1, x_2, \ldots is equidistributed with respect to the Haar measure μ if and only if for any irreducible character $\chi : G \to \mathbb{C}$ of G,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \chi(x_i) = \int_X \chi \, d\mu.$$

Note that the integral on the right is 1 if χ is the trivial character and 0 otherwise (orthogonality of characters).

3 L-functions and equidistribution

Here is a big generalization of our approach to Chebotarev’s density theorem. Take K and X as in the previous example. Let x_1, x_2, \ldots be a sequence of elements of X, and let $x_i \to N(x_i)$ be a function whose values are all integers at least 2. We make the following additional hypotheses.
(i) Assume that the Euler product

$$\prod_i (1 - N(x_i)^{-s})^{-1}$$

converges absolutely for $\operatorname{Re}(s) > 1$, and extends to a meromorphic function on a neighborhood of $\operatorname{Re}(s) \geq 1$ with no zeroes or poles in $\operatorname{Re}(s) \geq 1$ except for a simple pole at $s = 1$.

(ii) Let ρ be any irreducible representation of K with character χ. Put

$$L(s, \rho) = \prod_i \det(1 - \rho(x_i)N(x_i)^{-s})^{-1}.$$

(Note that $\rho(x_i)$ is only defined up to conjugation.) Then $L(s, \rho)$ converges absolutely for $\operatorname{Re}(s) > 1$, and extends to a meromorphic function on a neighborhood of $\operatorname{Re}(s) \geq 1$ with no zeroes or poles in $\operatorname{Re}(s) \geq 1$ except possibly at $s = 1$.

Theorem 2. The number of x_i with $N(x_i) \leq n$ is asymptotic to $n/\log n$ as $n \to \infty$. Moreover, for any irreducible character χ of G,

$$\sum_{i: N(x_i) \leq n} \chi(x_i) = c(\chi)n/\log n + o(n/\log n),$$

where $-c(\chi)$ is the order of vanishing of $L(s, \rho)$ at $s = 1$.

Proof. Yet another straightforward generalization of our original proof of the prime number theorem.

Corollary 3. Assume that there exists c such that for any $n \in \mathbb{Z}$, there are at most c values of i with $N(x_i) \leq c$. Then the x_i are equidistributed for Haar measure if and only if $c(\chi) = 0$ for every nontrivial irreducible character at χ.

This reproduces the Chebotarev density theorem from the previous unit.

4 The Sato-Tate conjecture

The following is a rather nonobvious application of the above formalism.

Conjecture 4 (Sato-Tate). Suppose E does not have complex multiplication. Let α_p be the root of $x^2 - a_p x + p$ with nonnegative imaginary part. Then \(\arg(\alpha_p/\sqrt{p}) \) is equidistributed in $[0, \pi]$ for the measure $\frac{2}{\pi} \sin^2 \theta d\theta$.

What does the condition that E does not have complex multiplication mean? The points of E naturally form an abelian group, in which three points add to 0 if and only if they are collinear. We say E has complex multiplication if the only endomorphisms of E as an algebraic group are multiplication by integers. (Over \mathbb{C}, E forms a Riemann surface which looks like the quotient of \mathbb{C} by a lattice; an endomorphism of E corresponds to a complex number which multiplies the lattice into itself.)
Theorem 5 (Clozel, Harris, Taylor). The Sato-Tate conjecture holds if $j(E) \notin \mathbb{Z}$. (This implies that E does not have complex multiplication.)

I’ll skip the definition of the j-invariant E for now; see Silverman’s book.

5 Equidistribution and Sato-Tate

How does the elliptic curve example relate to Sato-Tate? Put $K = SU(2)$, the group of 2×2 unitary matrices of determinant 1. Any class in X contains a unique matrix of the form

$$\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}, \quad 0 \leq \theta \leq \pi.$$

Thus we may use the α_p’s to generate elements x_p of X by taking $\theta = \arg(\alpha_p/\sqrt{p})$. The Haar measure on X is precisely the Sato-Tate measure, so we are reduced to asking whether the x_p are equidistributed.

The irreducible representations of K are just the symmetric powers of the standard 2-dimensional representation. Hence Sato-Tate reduces to the following, which is the real hard content in the work of Clozel-Harris-Taylor. (Note that you have to shift the abscissa of absolute convergence by $1/2$.)

Theorem 6. Let $P_n(T)$ be the polynomial with constant coefficient 1 and roots $\alpha_p^n, \alpha_p^{n-1}, \ldots, \alpha_p$. If $j(E) \notin \mathbb{Z}$, then the Euler product

$$\prod_p P_n(p^{-s})^{-1}$$

extends to a holomorphic function on \mathbb{C}. (Since the Euler product converges absolutely for $\text{Re}(s) > 3/2$, the product cannot vanish for $\text{Re}(s) \geq 3/2$.)

Exercises (optional)

1. Let $\alpha_1, \ldots, \alpha_m$ be real numbers such that $1, \alpha_1, \ldots, \alpha_m$ are linearly independent over \mathbb{Q}. Apply Weyl’s criterion to prove that the sequence $x_n = (n\alpha_1, \ldots, n\alpha_m) \in (\mathbb{R}/\mathbb{Z})^m$ is equidistributed for the usual measure.

2. Prove that the sequence $\log n$ is not uniformly distributed for any measure on \mathbb{R}/\mathbb{Z}.