1 Review of notation

Let $f : \mathbb{N} \to \mathbb{C}$ be an arithmetic function, and suppose we want to estimate the sum of f over primes. More precisely, let P be a set of primes, and put

$$P(z) = \prod_{p \leq z, p \in P} p.$$

If we define

$$S(x, z) = \sum_{n \leq x, (n, P(z)) = 1} f(n),$$

$$A_d(x) = \sum_{n \leq x, n \equiv 0 \pmod{d}} f(n)$$

(with the dependence on P and f suppressed from the notation), we have

$$S(x, z) = \sum_{d \mid P(z)} \mu(d)A_d(x).$$

Let $g(d)$ be a multiplicative function with

$$g(p) \in [0, 1] \quad (p \in P);$$
$$g(p) = 0 \quad (p \not\in P),$$

and write

$$A_d(x) = g(d)x + r_d(x).$$

Then

$$S(x, z) = V(z)x + R(x, z)$$
$$V(z) = \prod_{p \mid P(z)} (1 - g(p))$$
$$R(x, z) = \sum_{d \mid P(z)} r_d(x).$$

2 The Selberg upper bound sieve

In the previous unit, we used the combinatorial sieve to construct an arithmetic function $\lambda^+ : \mathbb{N} \to \mathbb{R}$ such that

$$\lambda^+(1) = 1$$
$$\sum_{d \mid n} \lambda^+(d) \geq 0 \quad (n > 1).$$
By setting
\[V^+(z) = \sum_{d|P(z)} \lambda^+(d)g(d) \]
\[R^+(x, z) = \sum_{d|P(z)} \lambda^+(d)r_d(x), \]
we were able to obtain the bound
\[V^-(z)x + R^-(x, z) \leq S(x, z) \leq V^+(z)x + R^+(x, z), \] (1)
but controlling \(V^+ \) and \(R^+ \) was rather painful.

Selberg proposed instead to construct an arithmetic function \(\rho : \mathbb{N} \to \mathbb{R} \) with \(\rho(1) = 1 \) and
\[\sum_{d|n} \lambda^+(n) = \left(\sum_{d|n} \rho(d) \right)^2. \]
In other words, let \(\rho \) be any arithmetic function with \(\rho(1) = 1 \), and put
\[\lambda^+(n) = \sum_{d_1, d_2 : \text{lcm}(d_1, d_2) = n} \rho(d_1)\rho(d_2). \]
We will typically want \(\lambda^+(d) = 0 \) for \(d \geq y \), for some prespecified number \(y \); to enforce this, we may insist that \(\rho(n) = 0 \) for \(n \geq \sqrt{y} \). We call the resulting \(\lambda^+ \) an \(L^2 \)-sieve of level \(y \), or more commonly a Selberg (upper bound) sieve of level \(y \).

Let us drop \(x \) from consideration by agreeing to only consider functions \(f \) with finite support. (That is, we replace \(f \) by the function vanishing above \(x \).) If we again set
\[S(z) = \sum_{(n, P(z))=1} f(n) \]
\[V^+(z) = \sum_{d|P(z)} \lambda^+(d)g(d) \]
\[= \sum_{d_1, d_2 : \text{lcm}(d_1, d_2)} \rho(d_1)\rho(d_2)g(\text{lcm}(d_1, d_2)) \]
\[R^+(z) = \sum_{d|P(z)} \lambda^+(d)r_d(x) \]
\[= \sum_{d_1, d_2 : \text{lcm}(d_1, d_2)} \rho(d_1)\rho(d_2)r_\text{lcm}(d_1, d_2)(x), \]
we again have
\[S(z) \leq V^+(z)x + R^+(z). \] (2)
Ignoring the error term $R^+(z)$ for the moment, one can ask about optimizing the main term $V^+(z)x$ in the bound (2). This amounts to viewing $V^+(z)$ as a quadratic form and then minimizing it.

For simplicity, we will assume that $g(p) \in (0, 1)$ for $p \in P$, and $g(p) = 0$ for $p \not\in P$. (Before we only wanted $g(p) \in [0, 1)$ for $p \in P$, but there is no harm in adding to P those primes p for which $g(p) = 0$ into P.) Let h be a multiplicative function with

$$h(p) = \frac{g(p)}{1 - g(p)}.$$

We can then diagonalize the quadratic form as follows: first, put $c = \gcd(d_1, d_2)$, $a = d_1/c$, $b = d_2/c$ to obtain

$$V^+(z) = \sum_{a,b,c:abc \mid P(z)} \rho(ac)\rho(bc)g(abc)$$

$$= \sum_{c \mid P(z)} g(c)^{-1} \sum_{a,b:abc \mid P(z)} (g(ac)\rho(ac))(g(bc)\rho(bc)).$$

Note that since $P(z)$ is squarefree, the condition $abc \mid P(z)$ forces $\gcd(a, b) = 1$. We now perform inclusion-exclusion on $\gcd(a, b)$ to obtain

$$V^+(z) = \sum_{c \mid P(z)} g(c)^{-1} \sum_{d \mid P(z)/c} \mu(d) \left(\sum_{m \mid P(z)/(cd)} g(cm)\rho(cm) \right)^2$$

$$= \sum_{c \mid P(z)} g(c)^{-1} \sum_{d \mid P(z)/c} \mu(d) \left(\sum_{m \mid P(z):m \equiv 0 (cd)} g(m)\rho(m) \right)^2.$$

We next substitute $e, f/e$ in for c, d, and reorder the sum:

$$V^+(z) = \sum_{f \mid P(z)} \sum_{e \mid f} \mu(f/e)g(e)^{-1} \left(\sum_{m \mid P(z):m \equiv 0 (f)} g(m)\rho(m) \right)^2$$

$$= \sum_{f \mid P(z)} h(f)^{-1} \left(\sum_{m \mid P(z):m \equiv 0 (f)} g(m)\rho(m) \right)^2.$$

Let’s put

$$\xi(d) = \mu(d) \sum_{m \mid P(z):m \equiv 0 (d)} g(m)\rho(m),$$

so that we have

$$V^+(z) = \sum_{d \mid P(z)} h(d)^{-1}\xi(d)^2.$$
Before we can minimize this quadratic form, we must first reexpress in terms of ξ the conditions we imposed on ρ. Namely, by Möbius inversion,

$$\rho(n) = \frac{\mu(n)}{g(n)} \sum_{d \mid P(z) : d \equiv 0 \pmod{n}} \xi(d),$$

so the condition $\rho(1) = 1$ is equivalent to

$$\sum_{d \mid P(z)} \xi(d) = 1,$$
and the condition $\rho(d) = 0$ for $d \geq \sqrt{y}$ is equivalent to

$$\xi(d) = 0 \quad (d \geq \sqrt{y}).$$

That is, ξ is restricted to a hyperplane.

Here’s where the L^2 part comes in. By the Cauchy-Schwartz inequality,

$$V^+(z) \geq H^{-1}, \quad H = \sum_{d < \sqrt{y}, d \mid P(z)} h(d),$$

and equality holds for

$$\xi(d) = h(d)H^{-1} \quad (d < \sqrt{y}).$$

Backing up, we get

$$\rho(d) = \mu(d)\frac{h(d)}{g(d)} H^{-1} \sum_{n < \sqrt{y}/d : \gcd(d,n) = 1} h(n).$$

Putting this together, we obtain the following.

Theorem 1 (Selberg). Let $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ be an arithmetic function with finite support. Let P be a set of primes, and put $P(z) = \prod_{p \leq z, p \in P} p$. For $d \mid P(z)$, write

$$A_d = \sum_{n \equiv 0 \pmod{d}} f(n) = g(d)X + r_d(z)$$

for $X > 0$ and g a multiplicative function with $0 < g(p) < 1$ for all $p \in P$. Let $h(d)$ be a multiplicative function with $h(p) = g(p)(1 - g(p))^{-1}$ for all $p \in P$, and put

$$H = \sum_{d < \sqrt{y}, d \mid P(z)} h(d)$$

for some $y > 1$. Then

$$S(z) = \sum_{(n,P(z)) = 1} f(n) \leq XH^{-1} + \sum_{d \mid P(z)} \lambda^+(d)r_d(z),$$

(3)
\[
\lambda^+(n) = \sum_{d_1, d_2 : \text{lcm}(d_1, d_2) = n} \rho(d_1) \rho(d_2)
\]

\[
\rho(d) = \mu(d) \frac{h(d)}{g(d)} H^{-1} \sum_{n < \sqrt{d}/\gcd(d, n) = 1} h(n).
\]

As a somewhat miraculous corollary (due to van Lint and Richert), we obtain

\[
0 \leq \mu(d) \rho(d) \leq 1 \tag{4}
\]
(exercise); this makes it easy to estimate the error term in (3), e.g., by

\[
|\lambda^+(d)| \leq d^{(\log 3)/(\log 2)} \tag{5}
\]
(exercise).

Exercises

1. Prove (4). (Hint: group terms in the definition of \(H\) according to the common divisor of \(d\) with some fixed number \(e\).)

2. Deduce (5) from (4), by proving that \(|\lambda^+(d)| \leq 3^{\nu(d)}\), for \(\nu(d)\) equal to the number of prime factors of \(d\).

3. In the Selberg sieve, prove that if we extend \(g\) to a completely multiplicative function, then

\[
H \geq \sum_{n < \sqrt{N}} g(n).
\]

4. Prove that for some \(c > 0\),

\[
\sum_{n \leq x} \frac{2^{\nu(n)}}{n} \geq c \log^2 x \quad (x \geq 1).
\]

(Hint: an elementary proof is possible, but one can also use analytic arguments on the Dirichlet series \(\zeta^2(s)/\zeta(2s) = \sum_{n=1}^{\infty} 2^{\nu(n)} n^{-s}\).)

5. Let \(d(n)\) denote the number of divisors of the positive integer \(n\). Prove that

\[
\sum_{n \leq x} d(n) \sim x \log x.
\]

(This is needed for the next problem.)
6. Use the Selberg sieve to prove that the number of twin primes \(p \leq x \) is \(O(x/\log^2 x) \).
 (Hint: put \(f(n) = 1 \) if \(n = m(m+2) \) for some \(m \) and \(f(n) = 0 \) otherwise, then apply the Selberg sieve with \(z = x^{1/4} \). You may need some of the earlier exercises as well.)

7. (Brun-Titchmarsh theorem) Prove that for any \(\epsilon > 0 \), there exists \(x_0 = x_0(\epsilon) \) with the following property: for any positive integers \(m, N \) with \(\gcd(m, N) = 1 \), and any \(x \geq \max\{N, x_0(\epsilon)\} \), the number of primes \(p \leq x \) with \(p \equiv m \pmod{N} \) is at most

\[
\frac{(2 + \epsilon)x}{\phi(N) \log(2x/N)}.
\]

This is one of several problems in which the Selberg sieve applies to give you a result which is off by a factor of 2 from the expected best result.

8. Prove that

\[
\sum_{n \leq x} \frac{n}{\phi(n)} = O(x),
\]

then deduce by partial summation that

\[
\sum_{n \leq x} \frac{1}{\phi(n)} = O(\log x),
\]

(Hint: first prove that the sum \(\sum_n 1/(n\gamma(n)) \) converges, where \(\gamma(n) = \prod_{p|n} p \).)

9. Use the previous two exercises to deduce that

\[
\sum_{p \leq x} d(p - 1) = O(x),
\]

where \(d(n) \) denotes the number of divisors of \(n \).