18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
The Selberg sieve

1 Review of notation

Let f : N — C be an arithmetic function, and suppose we want to estimate the sum of f
over primes. More precisely, let P be a set of primes, and put

P(z) = H p-

p<z,peP

If we define
S(x2)= Y f(n),

n<z,(n,P(z))=1

Aa(r) = > f(n)

n<z,n=0 (mod d)
(with the dependence on P and f suppressed from the notation), we have
Saz) = Y nld)Ad).
d|P(z)
Let g(d) be a multiplicative function with
9(p) €[0,1)  (peP);
gp) =0 (p&P),
and write
Ad(z) = g(d)z + r4().
Then
S(x,z) = V(2)z + R(z, )
V(z)= ] @ =g(p)
plIP(2)

R(z,z) = Z rq(z).

d|P(z)

2 The Selberg upper bound sieve

In the previous unit, we used the combinatorial sieve to construct an arithmetic function
AT N — R such that
A1) =1

DA d) =0 (n>1).
din



By setting

= 2 Xt

d|P(=
Z )\Jr T’d
d|P(z
we were able to obtain the bound
V= (2)x+ R (z,2) < S(z,2) < VT (2)x + R (z, 2), (1)

but controlling V* and R* was rather painful.
Selberg proposed instead to construct an arithmetic function p : N — R with p(1) = 1

and
2

Y A= (> sld)
din dln

In other words, let p be any arithmetic function with p(1) = 1, and put

Af(n) = > p(dy)p(dz).

di,d2:lem(dy,d2)=n

We will typically want AT (d) = 0 for d > y, for some prespecified number y; to enforce this,
we may insist that p(n) = 0 for n > |/y. We call the resulting A* an L?-sieve of level y, or
more commonly a Selberg (upper bound) sieve of level y.

Let us drop x from consideration by agreeing to only consider functions f with finite
support. (That is, we replace f by the function vanishing above z.) If we again set

Sz)= Y f

(n,P(2))=
=) X
d|P(z)

= Y pld)pld)gllem(ds, o))

d1,d2|P(z)

Rt (2) = Z AT (d)rq(z

d|P(z

— Z p(dl)p(dQ)rlcm(dbtb)(I>7

di,d2|P(z)

we again have

S(z) VT (2)x + R (2). (2)

2



Ignoring the error term R*(z) for the moment, one can ask about optimizing the main term
V*(z)z in the bound (2). This amounts to viewing V1 (z) as a quadratic form and then
minimizing it.

For simplicity, we will assume that g(p) € (0,1) for p € P, and g(p) = 0 for p ¢ P.
(Before we only wanted g(p) € [0,1) for p € P, but there is no harm in adding to P those
primes p for which g(p) = 0 into P.) Let h be a multiplicative function with

9(p)
he)=1_ 9(p)

We can then diagonalize the quadratic form as follows: first, put ¢ = ged(dy, ds), a = d;/c,
b = dy/c to obtain

Vi) = Y plac)p(be)g(abe)

a,b,c:abc| P(z)

S0 Y (glac)plac)) (glbp(se).

c|P(2) a,b:abc|P(z)

Note that since P(z) is squarefree, the condition abc|P(z) forces ged(a,b) = 1. We now
perform inclusion-exclusion on ged(a, b) to obtain

Vi) =Y 9@ Y ud | Y gledm)p(edm)

c|P(2) d|P(z)/c m|P(z)/(cd)

= g™ > uld) g(m)p(m)

c|P(2) d|P(z)/c m|P(z):m=0 (cd)

We next substitute e, f/e in for ¢, d, and reorder the sum:
2

Vi) = > > u(f/e)gle)™ > g(m)p(m)

fIP(2) elf m|P(2):m=0 (f)
= > g(m)p(m)
fIP(2)
Let’s put

m|P(z):m=0(d)

so that we have

VE(z) = > h(d)"'¢(d)*.

d|P(z)
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Before we can minimize this quadratic form, we must first reexpress in terms of £ the con-
ditions we imposed on p. Namely, by Mobius inversion,

n
o) =1 S )
g(n) d|P(z):d=0 (n)
so the condition p(1) =1 is equivalent to
> ) =1,

d|P(z)

and the condition p(d) = 0 for d > ,/y is equivalent to

§d) =0 (d=y).

That is, £ is restricted to a hyperplane.
Here’s where the L? part comes in. By the Cauchy-Schwartz inequality,

Vi) =2H',  H= > hd)
d<./y,d|P(z)

and equality holds for
Ed)=ndH"  (d<y)
Backing up, we get

p(d) = p(d)—=H" > hn).

n<y/y/d:ged(d,n)=1

Putting this together, we obtain the following.

Theorem 1 (Selberg). Let f : N — R be an arithmetic function with finite support. Let

P be a set of primes, and put P(2) =[] <, ,cpp- For d|P(2), write

Av= )Y f(n) = g(d)X +ra(2)
n=0(d)

for X > 0 and g a multiplicative function with 0 < g(p) < 1 for all p € P. Let h(d) be a
multiplicative function with h(p) = g(p)(1 — g(p))~! for all p € P, and put

H= >«

for some y > 1. Then



for
At(n) = > p(di)p(dz)

d1,d2:lem(dy,d2)=n

o) = @)Dt S ),

n</y/d:ged(d;n)=1
As a somewhat miraculous corollary (due to van Lint and Richert), we obtain
0 < p(d)p(d) <1
(exercise); this makes it easy to estimate the error term in (3), e.g., by
IAF(d)] < (o8 3)/(log 2)

(exercise).

Exercises

1. Prove (4). (Hint: group terms in the definition of H according to the common divisor

of d with some fixed number e.)

2. Deduce (5) from (4), by proving that |A\*(d)| < 3"@ | for v(d) equal to the number of

prime factors of d.

3. In the Selberg sieve, prove that if we extend g to a completely multiplicative function,

then

H> > g(n).

n<\/y

4. Prove that for some ¢ > 0,

by

n<x

21/(n)

> clog® x (x >1).

(Hint: an elementary proof is possible, but one can also use analytic arguments on the

Dirichlet series ¢2(s)/¢(2s) = Y o0, 2/(Mp=s))

5. Let d(n) denote the number of divisors of the positive integer n. Prove that

Z d(n) ~ zlogx.

n<x

(This is needed for the next problem.)



6. Use the Selberg sieve to prove that the number of twin primes p < x is O(z/ log® z).
(Hint: put f(n) =1 if n = m(m + 2) for some m and f(n) = 0 otherwise, then apply
the Selberg sieve with z = 2'/4. You may need some of the earlier exercises as well.)

7. (Brun-Titchmarsh theorem) Prove that for any ¢ > 0, there exists xy = zo(€) with
the following property: for any positive integers m, N with ged(m, N) = 1, and any
x > max{N, zo(¢)}, the number of primes p < z with p = m (mod N) is at most

2+ e
¢(N)log(2z/N)

This is one of several problems in which the Selberg sieve applies to give you a result
which is off by a factor of 2 from the expected best result.

8. Prove that

Z W = O(x),

n<x

then deduce by partial summation that

1
Z o) O(log ),

n<x
(Hint: first prove that the sum »_, 1/(ny(n)) converges, where v(n) = [[,, p.)

9. Use the previous two exercises to deduce that

Y dp—1) =O0(x),

p<z

where d(n) denotes the number of divisors of n.



