
18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Applying the Selberg sieve

Here are some suggestions about how to apply the Selberg sieve; this should help with
some of the exercises on the previous handout (the bound on twin primes, and the Brun-
Titchmarsh inequality).

1 Review of the setup

Recall the setup.

Theorem 1 (Selberg). Let f : N → R≥0 be an arithmetic function with finite support. Let

P be a set of primes, and put P (z) =
∏

p≤z,p∈P p. For d|P (z), write

Ad =
∑

n≡0 (d)

f(n) = g(d)X + rd(z)

for X > 0 and g a multiplicative function with 0 < g(p) < 1 for all p ∈ P . Let h(d) be a

multiplicative function with h(p) = g(p)(1 − g(p))−1 for all p ∈ P , and put

H =
∑

d<
√

y,d|P (z)

h(d)

for some y > 1. Then

S(z) =
∑

(n,P (z))=1

f(n) ≤ XH−1 +
∑

d|P (z)

λ+(d)rd(z), (1)

for

λ+(n) =
∑

d1,d2:lcm(d1 ,d2)=n

ρ(d1)ρ(d2)

ρ(d) = µ(d)
h(d)

g(d)
H−1

∑

n<
√

y/d:gcd(d,n)=1

h(n).

Also recall that we could bound λ+(d) by τ3(d), the number of ways to write d as a
product of 3 positive integers.

2 Interlude: bounding sums of multiplicative functions

Let f be a multiplicative function, for which we want to bound
∑

n≤x f(n). Here is an
argument that does this for us (due to Wirsing), assuming some control over the values of f
at prime powers.
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To be specific, let e be the arithmetic function defined by the following identity of formal
Dirichlet series: ∞

∑

n=1

e(n)n−s = − d

ds
log

∞
∑

n=1

f(n)n−s.

We will impose the condition that for some κ > 0,
∑

n≤x

e(n) = κ log x + O(1) (2)

and
∑

n≤x

|f(n)| = O(log|κ| x). (3)

(The superfluous absolute value in (3) is included because it actually suffices to take κ >
−1/2, but we won’t use this.)

Define
Mf(x) =

∑

n≤x

f(n),

which is what we want to estimate. We first obtain

(κ + 1)
∑

n≤x

f(n) log n = κMf (x) log x + O(logκ x) (4)

(exercise). Since
∑

n≤x

f(n) log(x/n) =

∫ x

1

Mf (y)y−1 dy,

we obtain

∆(x) = Mf (x) log x − (κ + 1)

∫ x

2

Mf (y)y−1 dy = O(logκ x).

We next derive the following identity:

Mf (x) = logκ x

∫ x

2

−∆(y)d(log y)−κ−1 + ∆(x) log−1 x (5)

(exercise). This implies
Mf (x) = cf logκ x + O(logκ−1 x)

for

cf = −
∫ ∞

2

∆(y)d(log y)−κ−1,

but it would be nice to be able to describe cf more explicitly. Fortunately this is possible:
we have

cf =
1

Γ(κ + 1)

∏

p

(1 − p−1)κ(1 + f(p) + f(p2) + · · · ) (6)

(exercise).

2



3 Bounding the main term

To get an upper bound on the main term XH−1, we need a lower bound on H. A simple
example occurs when g(d) = d−1; see exercises.

A more generic example occurs when we have
∑

p≤x

g(p) log p = κ log x + O(1)

for some κ > 0, and
∑

p

g(p)2 log p < ∞.

For instance, this holds if g(p) = c/p. By Wirsing’s bound, we get

H = c logκ √y(1 + O(log−1 y))

c =
1

Γ(κ + 1)

∏

p

(1 − g(p))−1(1 − p−1)κ.

This can be more usefully written as

H−1 = 2κΓ(κ + 1)Hg log−κ y(1 + O(log−1 y)), (7)

where
Hg =

∏

p

(1 − g(p))(1 − p−1)−κ.

4 Bounding the error term

Suppose our function g satisfies the conditions

g(d)d ≥ 1 (d|P (z)) (8)

and
∑

y≤p≤x

g(p) log p = O(log(2x/y)). (9)

Suppose also that the individual error terms rd are not too large:

|rd(z)| ≤ g(d)d (d|P (z)). (10)

Then it is straightforward to derive the bound
∣

∣

∣

∣

∣

∣

∑

d|P (z)

λ+(d)rd(z)

∣

∣

∣

∣

∣

∣

≤ y log−2 y (11)

(exercise).
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Exercises

1. In the Selberg sieve, prove that
H > log

√
y.

Moreover, if we instead take g(d) = d−1 and P to be the set of all primes, then

H > (log
√

y)
∏

p|q
(1 − g(p)).

2. Prove (4).

3. Prove (5).

4. Prove (6). (Hint: write
∑∞

n=1 f(n)n−s in terms of cf by partial summation, then
multiply by ζ(s + 1)κ and compare to the Euler product.)

5. Prove (11). (Hint: first bound the sum on the left by





∑

d<
√

y

|ρd|g(d)d





2

≤





1

H

∑

n<
√

y

h(n)σ(n)





2

,

where σ is the usual sum-of-divisors function. Then apply the prime number theorem
plus partial summation to control this.)
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