18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya)
Applying the Selberg sieve

Here are some suggestions about how to apply the Selberg sieve; this should help with
some of the exercises on the previous handout (the bound on twin primes, and the Brun-
Titchmarsh inequality).

1 Review of the setup

Recall the setup.

Theorem 1 (Selberg). Let f : N — R be an arithmetic function with finite support. Let
P be a set of primes, and put P(2) =[] <, ,cpp- For d|P(2), write

Aa= ) f(n) = g(d)X +ra42)

n=0(d)

for X > 0 and g a multiplicative function with 0 < g(p) < 1 for all p € P. Let h(d) be a
multiplicative function with h(p) = g(p)(1 — g(p))~" for all p € P, and put

H= ) hd)
d<\/7,d|P(z)
for somey > 1. Then

S(z)= Y f)SXH'+ Y N(d)ra=), (1)

(n,P(2))=1 d|P(z)

for
AT (n) = > p(di)p(da)

d1,d2:lem(dy,d2)=n

od) =)Dt S ),

g(d> n</y/d:ged(d,n)=1

Also recall that we could bound A*(d) by 73(d), the number of ways to write d as a
product of 3 positive integers.

2 Interlude: bounding sums of multiplicative functions

Let f be a multiplicative function, for which we want to bound ) _ f(n). Here is an
argument that does this for us (due to Wirsing), assuming some control over the values of f
at prime powers.



To be specific, let e be the arithmetic function defined by the following identity of formal

Dirichlet series:
o0

Ze(n)n’s = —% logz f(n)n

We will impose the condition that for some k > 0,
Ze(n) = rlogz + O(1) (2)
n<x

and

> [f(n)] = O(logh! ). (3)

n<x

(The superfluous absolute value in (3) is included because it actually suffices to take xk >
—1/2, but we won'’t use this.)
Define

=> f(n)

n<x

which is what we want to estimate. We first obtain

(k+1) Z f(n)logn = kM(x)logz + O(log" ) (4)

n<x

(exercise). Since

Zf )log(x/n) = / M;(y)y~ ' dy,

n<x

we obtain N
Aw) = My(a)log — (s + 1) | My(y)y dy = Ollog" )
2
We next derive the following identity:
= log” :1:/ —A(y)d(logy) "'+ A(z) log ™' (5)

2

(exercise). This implies
M;(z) = cylog”z + O(log" ' )

for

e = / " Aly)d(logy)

but it would be nice to be able to describe ¢y more explicitly. Fortunately this is possible:
we have

= ey LI =7 O S0 4167 400 (

(exercise).



3 Bounding the main term

To get an upper bound on the main term X H !, we need a lower bound on H. A simple

example occurs when g(d) = d!; see exercises.
A more generic example occurs when we have

Zg(p) logp = klogz + O(1)

p<z

for some xk > 0, and
> 9(p)’logp < oo.
P

For instance, this holds if g(p) = ¢/p. By Wirsing’s bound, we get

H = clog” \/y(1 + O(log™ ' y))

1

S TPy 1;[(1 —g(p) M1 —-p )"

This can be more usefully written as
H™ ' =2"T(k+ 1)H,log " y(1+ O(log™' y)),

where

Hy=[[@=g(p)@—p")™

4 Bounding the error term

Suppose our function g satisfies the conditions
gdd=1  (d|P(z))

and

> glp)logp = O(log(2z/y)).

y<p<w

Suppose also that the individual error terms r, are not too large:
ra(z)] < gld)d  (d[P(z)).
Then it is straightforward to derive the bound
Z M (d)rg(2)| < ylog™2y
d|P(z)

(exercise).



Exercises

1. In the Selberg sieve, prove that
H >log+/y.
Moreover, if we instead take g(d) = d~! and P to be the set of all primes, then

H > (logv/y) [ [(1 - g(»)).

plg

2. Prove (4).
3. Prove (5).

4. Prove (6). (Hint: write > 2, f(n)n™® in terms of ¢; by partial summation, then
multiply by ((s + 1) and compare to the Euler product.)

5. Prove (11). (Hint: first bound the sum on the left by

2 2

Z lpalg(d)d | < % Z h(n)o(n) |

d<\/y n<,\/y

where ¢ is the usual sum-of-divisors function. Then apply the prime number theorem
plus partial summation to control this.)



