
18.786: Topics in Algebraic Number Theory (spring 2006)
Problem Set 2, due Thursday, March 2

Reminder: no class on February 21 or 23! That’s why this set is on the long side.

1. Put R = Z[
√

5]. Exhibit:

(a) a failure of unique factorization of ideals in R;

(b) a failure of a local ring of R to be a DVR.

2. These are not actually related; they were run together by mistake on the original
version, and to preserve the numbering I have left them together here.

(a) Let R be an integrally closed domain. Prove that R[x] is also integrally closed.

(b) Let R be a noetherian local domain with maximal ideal m. Prove that R is a DVR
if and only if m/m2, when viewed as a vector space over R/m, is one-dimensional.
(The space m/m2 is called the cotangent space of R, because that’s what it is in
the case where R is the local ring of a point on a smooth manifold.)

3. Determine the integral closure of Z in Q[x]/(x3 − 2) and in Q[x]/(x3 − x − 4). (Re-
member: this means you have to first state the answer, then prove that nothing else
in the field is integral!)

4. Let P ∈ C[x, y] be an irreducible polynomial such that P is nonsingular in the affine
plane, that is, P, ∂P

∂x
, ∂P

∂y
generate the unit ideal. Prove that C[x, y]/(P ) is a Dedekind

domain; among other things, this will reveal the origin of the term “uniformizer” as an
abbreviation for “uniformizing parameter”. (Hint: by the Nullstellensatz, the maximal
ideals of C[x, y] correspond to points in C2, and the maximal ideals of C[x, y]/(P )
correspond to points where P vanishes. Now use condition 2 from Theorem I.3.16.)

5. Demonstrate an example to show that in the previous problem, the nonsingularity
condition cannot be omitted. (Hint: the simplest example is a node, where analytically
two branches of the zero locus appear to cross.)

6. Prove the following converse of the unique factorization theorem: let R be an integral
domain in which every nonzero ideal has a unique factorization into prime ideals. Prove
that R is a Dedekind domain. (Hint: suppose that R has a maximal ideal m of height
greater than 1, and then construct a m-primary ideal which is not a power of m.)

7. Let R be a Dedekind domain, let p1, . . . , pn be nonzero prime ideals of R, and let S
be the multiplicative subset R− (p1 ∪ · · · ∪ pn). Prove that RS is a PID. (Hint: prove
that RS has only the “obvious” prime ideals.)

8. Exercise I.1 (page 13).

9. (a) Do Exercise I.4 (page 19).
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(b) Prove that if S is the multiplicative set generated by a single element f , the kernel
of the map C(R) → C(RS) is generated by the classes of the prime ideals in the
prime factorization of (f).

(c) Deduce that if C(R) is finite, then there exists a nonzero f ∈ R such that Rf is
a PID.

(c) Exhibit an explicit example where the map C(R) → C(RS) fails to be injective.

10. Here is a variant of the concept of a PID which is sometimes useful. A Bézout ring is
a ring in which every finitely generated ideal is principal. That is, a Bézout ring is like
a PID except it may not be noetherian, e.g., the ring ∪∞n=1CJx1/nK from lecture.

(a) Prove that every finitely generated torsion-free module over a Bézout domain is
free, by imitating the proof in the PID case. (Optional: generalize other results
to the Bézout case, e.g., the fact that a finitely presented projective module over
a Bézout domain is free.)

(b) Let R be the integral closure of Z in C. Prove that the localization of R at any
maximal ideal is a Bézout ring which is not noetherian.

(c) For 0 < r < 1, let Rr be the ring of complex analytic functions on the annulus
r < |z| < 1. Prove that R = ∪rRr is a Bézout domain which is not noetherian.
(Hint: recall that the zeroes of an analytic function have no accumulation point
in the region of definition.)

(d) Optional: prove that the ring R in (b) is itself a Bézout ring. For this, you may
use results from Janusz that we have not yet covered in class, e.g., the fact that
the integral closure of Z in a finite extension of Q is a Dedekind ring, or the
finiteness of the class group of said ring.

11. Find out how to use SAGE built-in functions to compute the class group of the ring
of integers in a quadratic number field. Then write a program to compute the sizes of
the class groups of Q(

√
d) and Q(

√
−d) for d ≤ 1000, and tell me what you notice.

Pay particular attention to factors of 2. (Optional: repeat with some cubic number
fields and pay attention to the factors of 3.)

12. (Not to be turned in) Read the proof of Theorem I.3.16, particularly any parts I skipped
in class.

13. (Optional, not to be turned in) Read the beginning of Silverman’s The Arithmetic of
Elliptic Curves to find out why the class group of C[x, y]/(y2 − x3 − Ax − B), where
A, B ∈ C are such that x3−Ax−B has no repeated roots, is isomorphic to a complex
torus (i.e., C modulo a lattice), and so in particular is infinite.
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