
2. Janusz p. 81, exercise 5.

3. Let K be a number field, and let S be a finite set of nonzero primes in \mathcal{O}_K, and write $\mathcal{O}_{K,S}$ for the localization of \mathcal{O}_K at the multiplicative set generated by S (i.e., you take elements which generate ideals whose only prime factors are elements of S).

 (a) Prove that the torsion subgroups of \mathcal{O}_K^* and of $\mathcal{O}_{K,S}^*$ are equal.

 (b) Prove that $\mathcal{O}_{K,S}^*/\mathcal{O}_K^*$ (which is torsion-free by (a)) is free of rank $\#S$. (Hint: every ideal has a power which is principal. That may not give you the entire quotient, but it’s enough to prove the claim.)

You have now extended Dirichlet’s units theorem to cover “S-units”.

4. Use Minkowski’s bound to prove that the number field $\mathbb{Q}[x]/(x^3 - x^2 - x + 2)$ has class number 1. You may use SAGE to find the discriminant without further justification.

5. Let $P(x) \in \mathbb{Z}[x]$ be an irreducible monic polynomial whose discriminant D is square-free. Prove that the splitting field of $P(x)$ contains and is everywhere unramified over $\mathbb{Q}(\sqrt{D})$. (This shows that Janusz, Theorem I.13.9 becomes quite false if you replace \mathbb{Q} by a “random” quadratic number field.)

6. A CM field (for “complex multiplication”) is a totally imaginary quadratic extension of a totally real number field.

 (a) Let K be a totally complex number field; then for each embedding $K \hookrightarrow \mathbb{C}$, complex conjugation on \mathbb{C} induces an automorphism of K. Prove that these are all the same automorphism if and only if K is a CM field.

 (b) Prove that for any odd prime p, $\mathbb{Q}(\zeta_p)$ is a CM field.

 (c) Prove that every unit u in $\mathbb{Z}[\zeta_p]$ is equal to a power of ζ_p times a totally real element. (Hint: divide u by its conjugate.)

7. In class several lectures ago, I defined the different $\text{Diff}(L/K)$ of an extension L/K of number fields as the ideal of \mathcal{O}_L inverse to the fractional ideal

 \[\{ x \in \mathcal{O}_L : \text{Trace}_{L/K}(xy) \in \mathcal{O}_K \text{ for all } y \in \mathcal{O}_L \}. \]
and I pointed out that it’s generated by $F'_\alpha(\alpha)$ for all $\alpha \in \mathfrak{o}_K$, where F_α denotes the characteristic polynomial of multiplication-by-α on L as a K-vector space.

(a) Prove that $\text{Disc}(L/K) = \text{Norm}_{L/K}(\text{Diff}(L/K))$.

(b) Let $M/L/K$ be a tower of number fields. Prove that as ideals of \mathfrak{o}_M,

$$\text{Diff}(M/L) \text{Diff}(L/K) = \text{Diff}(M/K),$$

and deduce as a corollary that

$$\Delta(M/K) = \Delta(L/K)^{[M:L]} \text{Norm}_{L/K}(\Delta(M/L)).$$

8. (a) Suppose K is a number field which contains and is unramified over the Gaussian rationals $\mathbb{Q}(i)$. Determine, up to sign, the absolute discriminant of K as a function of its absolute degree. (Hint: use the previous problem.)

(b) Use (a) and the Minkowski discriminant bound to prove that $\mathbb{Q}(i)$ admits no nontrivial everywhere unramified extension.

9. Go to http://www.mathpuzzle.com/, look up the 14 Mar 2006 entry, and prove “Snevets’ Last Theorem”. (Hint: guess what number field is defined by this polynomial.) Unfortunately, it’s too late to collect the $500...