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Abstract

I define the Brauer group of a field k as similarity classes of central
simple algebras over k. Then I introduce non-abelean cohomology
and use it to prove that the Brauer group is isomorphic to a certain
cohomology group. Brauer groups show up in global class field theory.

1 Simple Algebras

A ring A is called a k-algebra if it contains a field k in its center and is a
finite dimensional k-vectorspace. If A is a subalgebra of a k-algebra E, then
the centralizer CE(A) of A in E is the set of elements of E which commute
with all elements of A.

Z(A) := CA(A) is called the center of A. Its opposite Aopp is A with
reversed multiplication.

Remark 1.1. A k-algebra A is just a k-vectorspace V and an x ∈ V ⊗kV ∗⊗k

V ∗ which describes the multiplication in A: Given V and x =
∑

xi⊗φi⊗ψi,
A is V with the multiplication of two elements a, b ∈ V defined as a · b =∑

φi(a) · ψi(b) · xi.
On the other hand, given A, one chooses V as the underlying vectorspace

of A forgetting the multiplication, and after choosing a basis e1, . . . , en of V ,
choose φi as the projection to ei and xij = ei · ej. Then x =

∑
xij ⊗ φi ⊗ φj

corresponds to the multiplication in V .

Whenever we talk about A-modules, we mean finitely generated left A-
modules.
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Definition 1.2. An A-module V is simple if it is nonzero and it has no
A-submodules besides 0 and V .

Definition 1.3. A k-algebra A is simple if its only two-sided ideals are 0
and A.

Definition 1.4. A k-algebra A is a division algebra if the units of A are
A \ {0}.
Example 1.5. Let Mn(A) denote the algebra of n × n matrices over an
algebra A. For a division algebra D, Mn(D) is simple.

Theorem 1.6. Let A be a simple k-algebra. Then A is isomorphic to Mn(D)
for some n and some division k-algebra D.

Proof. Let S be a simple A-module (for example a minimal left ideal of A).
By left-multiplication, we get a homomorphism A → E := Endk(S) which is
injective: since A is simple, its kernel, which is a two-sided ideal of A, must
be 0 or A, but it is not A since 1 7→ 1.

Now CE(A) = EndA(S) which is a division algebra by Schur’s Lemma,
A = CE(CE(A)) = EndCE(A)(S) by the Double Centralizer Theorem, and
EndCE(A)(S) is isomorphic to a matrix algebra over CE(A)opp.

Definition 1.7. A k-algebra A is central if its center is k. It is central
simple if it is central and simple.

Lemma 1.8. A k-algebra A is central simple if and only if it is isomorphic
to Mn(D) for some division algebra D with center k.

Proof. Because A is simple, by theorem 1.6 it is isomorphic to some Mn(D)
with center k. On the other hand, the center of Mn(D) is the set of all d ·En

where En is the unit matrix and d is in the center of D.
In the other direction, Mn(D) is central simple because matrix algebras

are simple.

Remark 1.9. In the lemma above, D is uniquely determined up to isomor-
phism.

Theorem 1.10. The tensor product of central simple k-algebras is central
simple.

Proof. Omitted.
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Let A and B be central simple k-algebras. They are called similar (write
A ∼ B) if A ⊗k Mn(k) ∼= B ⊗k Mm(k) for some m and n. Let Br(k) be the
set of central simple k-algebras modulo the equivalence relation ∼. This is
an equivalence relation. A⊗k B is again central simple by theorem 1.10, and
if A ∼ A′ and B ∼ B′, then A ⊗k B ∼ A′ ⊗k B′, so one gets a well-defined
multiplication on Br(k). Since A⊗k Mn(k) ∼ A, Mn(k) is a neutral element
for any n, and since A⊗k Aopp ∼ Mn(k), Br(k) is a group.

Definition 1.11. The group of similarity classes of central simple k-algebras
with the above defined multiplications is called the Brauer group of k, denoted
by Br(k).

Remark 1.12. There is a bijection between the elements of Br(k) and the
division algebras D with center k, mapping D to the element represented by
some Mn(D).

Proof. Since Mn(D) ⊗k Mm(k) ∼= D ⊗k Mn(k) ⊗k Mm(k) ∼= D ⊗Mnm(k) ∼=
Mnm(D), all the representatives of an element of Br(k) have the same un-
derlying division algebra D. And Mn(D) and Mm(D) represent the same
element because Mn(D)⊗k Mm(k) ∼= Mnm(D) ∼= Mm(D) ∼= Mn(k).

Proposition 1.13. Let A be a central simple k-algebra, and let L/k be a
field extension. Then A⊗k L is a central simple L-algebra.

Proof. This is true because the tensor product of a simple and a central
simple algebra is simple, and because the center of the tensor product is the
tensor product of the centers.

Let L/k be a field extension. Define a map Br(k) → Br(L) by A 7→ A⊗kL.
It is well-defined because of (A ⊗k Mn(k)) ⊗k L ∼= A ⊗k Mn(L), and it is a
homomorphism because of (A ⊗k L) ⊗L (A′ ⊗k L) ∼= (A ⊗k A′) ⊗k L, using
the associativity of the tensor product.

Definition 1.14. Let Br(L/k) be the kernel of the above defined map Br(k) →
Br(L). An element of Br(k) (and any central simple k-algebra A that repre-
sents it) is split by L if it is in Br(L/k), i.e. if A ⊗k L is a matrix algebra
over L.
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2 Non-abelian cohomology

In this chapter we define the cohomology of an arbitrary (not necessarily
abelian) group A on which a group G acts on the left, i.e. a G-module. We
define H i(G,A) only for i = 0, 1 directly without using resolutions, similar
to the direct interpretation for these groups in the case that A is abelian.

Let H0(G,A) = AG, the elements of A invariant under the action of G.
Further let H1(G,A) = C1/ ∼ where C1 is the set of maps φ : G → A
satisfying φ(gh) = φ(g) · g(φ(h)) and φ ∼ ψ :⇔ φ(g) = a−1 · ψ(g) · g(a) for
some a ∈ A. This is an equivalence relation.

Now H1(G,A) is not a group as in the abelian case, but we have a distin-
guished element, the identity map, which makes it a pointed set, and a map
of pointed sets X and Y must send the distinguished element of X to the dis-
tinguished element of Y . We define the kernel of this map as the preimage of
the the distinguished element of Y . Now we can talk about exact sequences
of pointed sets.

As in the abelian case, given a group homomorphism f : A → B which
commutes with the operation of G, we get maps fi : H i(G,A) → H i(G,B)
for i = 1, 2.

Given an exact sequence 1 → A → B → C → 1 of G-modules, we get a
coboundary map δ : H0(G,C) → H1(G,A) as follows: Given c ∈ CG, choose
b ∈ B such that b 7→ c. Then for each g ∈ G, b−1g(b) is the image of an
element of A and call it φ(g). Now let δ(c) = φ. This defines an element
of H1(G,A) which is independent of all the choices made. As all the other
definition, this definition coincides with the usual definition if the groups are
abelian, and the proofs work exactly as in that case; we just have to take
care of not switching things unnecessarily around.

Proposition 2.1. If 1 → A → B → C → 1 is an exact sequence of G-
modules, then

1 → H0(G,A) → H0(G,B) → H0(G,C)

→ H1(G,A) → H1(G,B) → H1(G,C)

is an exact sequence of pointed sets.

If A is contained in the center of B, then A is abelian, and we have
H2(G,A), and we can define ∆ : H1(G,C) → H2(G,A) as follows.
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Using the explicit description of H i(G,A) given in [2], a cocycle for
H2(G,A) is given by a function G3 → A invariant under an action of G
satisfying certain relations. Similar to the case H1(G,A), it is determined
by its values with the identity of G as the first argument. Therefore it can
be described as a function φ : G2 → A satisfying g(φ(h, k)) · φ(g, hk) =
φ(gh, k) · φ(g, h).

Let c be a cocycle of H1(G,C). Then for each g ∈ G, choose a b(g) ∈ B
such that b(g) 7→ c(g). Now for each h ∈ G, b(g) · g(b(h)) · b(gh)−1 ∈ A, and
we can define this as φ(g, h) to get a cocycle φ of H2(G,A). Define ∆ by
mapping c to φ. This definition is independent of all the choice made.

Proposition 2.2. Under the conditions of prop. 2.1, with A contained in
the center of B, the sequence stays exact if we add H2(G,A) at the end using
∆.

3 The Brauer Group and Cohomology

Let L/k be a finite Galois extension of fields, and let G = Gal(L/k) and
H2(L/k) = H2(G,L∗). We will prove that H2(L/k) ∼= Br(L/k).

Let Brn(L/k) be the set of elements of Br(L/k) (see def. 1.14) which
are represented by algebras A such that A⊗k L ∼= Mn(L). Then Br(L/k) =⋃

Brn(L/k).
Consider the algebras representing elements of Brn(L/k) as pairs (V, x)

with V a n2-dimensional k-vectorspace and x ∈ V ⊗k V ∗⊗k V ∗ as in remark
1.1.

(V, x) and (V ′, x′) are called k-isomorphic if there is a vectorspace-isomorphism
f : V → V ′ such that f(x) = x′ where f(x) =

∑
xi ⊗ φi ◦ f−1 ⊗ ψi ◦ f−1

for x =
∑

xi ⊗ φi ⊗ ψi. Such an f exists if and only if the corresponding
k-algebras are isomorphic.

The fact that A ⊗k L ∼= Mn(L) corresponds to (V ⊗k L, x ⊗ 1) being
L-isomorphic to (Mn(L), x0) where x0 describes the standard multiplication
of matrices. And (V, x) ∼ (V ′, x′) if and only if they are k-isomorphic.

Let Cn(L) = AutL(Mn(L)), the group of L-algebra automorphisms of
Mn(L). Then G acts on Mn(L) component-wise, and for g ∈ G and φ :
Mn(L) → Mn(L), we define g(φ) = g ◦ φ ◦ g−1, which is an L-linear map, so
we get an action of G on Cn(L).

For g ∈ G, [(V, x)] ∈ Brn(L/k) and f : Mn(L) → V ⊗k L an L-
isomorphism mapping (V ⊗k L, x ⊗ 1) to (Mn(L), x0), let θf (g) = f−1 ◦
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g ◦ f ◦ g−1. Then θf (g) : Mn(L) → Mn(L) is an isomorphism because f is,
and it is L-linear, so θf (g) ∈ Cn(L).

Now θf : G → Cn(L) is a 1-cocycle: θf (gg′) = f−1 ◦ gg′ ◦ f ◦ (gg′)−1 =
(f−1 ◦ g ◦ f ◦ g−1) ◦ (g ◦ (f−1 ◦ g′ ◦ f ◦ g′−1) ◦ g−1) = θf (g) ◦ g(θf (g

′)).
If one chooses a different f ′ instead of f , then f ′ = φ ◦ f for some φ ∈

Cn(L), so θf ′(g) = (φf)−1 ◦ g ◦ (φf) ◦ g−1 = (f−1φ−1f) ◦ (f−1 ◦ g ◦ f ◦
g−1) ◦ (g ◦ (f−1φf) ◦ g−1) = (f−1φf)−1 ◦ θf (g) ◦ g(f−1φf), so θf ′ and θf are
1-cohomologous.

If one chooses (V ′, x′) representing the same element of Brn(L/k) as (V, x),
then f ′ = φ ◦ f for some φ : V → V ′, and the same computation as above
shows that θf and θf ′ are 1-cohomologous.

Therefore one gets a well-defined map θ : Brn(L/k) → H1(G,Cn(L))
defined by (V, x) 7→ θf as above.

Proposition 3.1. The map θ : Brn(L/k) → H1(G,Cn(L)) as above is bijec-
tive.

Proof. If (V, x) with f and (V ′, x′) with f ′ give θf = θf ′ , then f−1 ◦ g ◦ f ◦
g−1 = f ′−1 ◦ g ◦ f ′ ◦ g−1, so g−1 ◦ f ′f−1 ◦ g = f ′f−1, i.e. g(f ′f−1) = f ′f−1,
and therefore the L-isomorphism f ′f−1 is a k-isomorphism, so [(V, x)] =
[(V ′, x′)] ∈ Brn(L/k), and θ is injective. The element represented by Mn(L)
is mapped to 0 because in this case, f is the identity, so θf is zero.

Now let φ : G → Cn(L) be an arbitrary 1-cocycle. Since H1(G, GLn2(L))
is trivial (by exercise 3 of [1]) and Cn(L) ⊂ GLn2(L), there is an L-automorphism
f of Mn(L) such that φ(g) = f−1 ◦ g(f) for all g ∈ G. Let x′ = f(x0). Then
g(x′) = g(f(x0)) = g(f)(g(x0)) = g(f)(x0) = (f ◦ φ(g))(x0) = f(φ(g)(x0)) =
f(x0) = x′ where x0 corresponding to the standard matrix multiplications is
independent of base changes and the operation of G. Therefore x′ is defined
over k, and [(Mn(k), x′)] ∈ Brn(L/k) maps to [φ] ∈ H1(G,Cn(L), so θ is also
surjective.

Because every automorphism of Mn(L) is inner, the map GLn(L) →
Cn(L) mapping φ ∈ GLn(L) to the conjugation by φ is surjective, and since
the center of GLn(L) is just {L∗ ·En} where En is the unit matrix of Mn(L),
the sequence 1 → L∗ → GLn(L) → Cn(L) → 1 is exact.

By the long exact sequence in cohomology, this gives a map ∆n : H1(G,Cn(L)) →
H2(G,L∗), and δn = ∆n ◦ θ : Brn(L/k) → H2(G,L∗).

The different δn are compatible: For C ∈ Brn(L/k), δn(C) = 0 if and
only if ∆n(C) = 0 since θ is bijective, and this is true if and only if C
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is represented by a matrix algebra because θ is a bijection mapping this
element to zero by 3.1, and ∆n is injective because the preceding term in
the long exact sequence is H1(G, GLn(L)) = 0 (again by exercise 3 of [1]).
And δn(C) + δn′(C

′) = δnn′(C ⊗k C ′) by an easy computation. Therefore the
deltan give an injective homomorphism δ : Br(L/k) → H2(L/k).

Theorem 3.2. The map δ : Br(L/k) → H2(L/k) is an isomorphism.

Proof. Because δ is injective and because of prop. 3.1, it is enough to show
that ∆n is surjective for n = [L : k].

Let a : G × G → L∗ ⊂ GLn(L) be an arbitrary cocycle. Let V be the
L-vectorspace with basis {eh, h ∈ G}, and let pg be the automorphism of V
defined by pg(eh) = a(g, h)·egh. Then ps(s(pt)(eu)) = a(s, tu)·s(a(t, u))·(estu)
and a(s, t) · pst(eu) = a(s, t) · a(st, u) · estu, and since a(s, t) · a(st, u) =
a(s, tu) · s(a(t, u)), we get a(s, t) = ps(s(pt)(p

−1
st )), so a is in the image of

∆n.

Proposition 3.3. A k-algebra A is central simple if and only if A ⊗k k̄ =
Mn(k̄) for some n, where k̄ is the algebraic closure of k.

Proof. See Bourbaki, Algebra, Chapter VIII.

Proposition 3.4. A k-algebra A is central simple if and only if A ⊗k L =
Mn(L) for some n and some finite Galois extension L/k.

Proof. Choose a basis e1, . . . , en2 of A, and let A1, . . . , An2 be the images of
ei ⊗ k̄ in Mn(k̄), using the isomorphism from prop. 3.3. Let L be a finite
Galois extension containing the entries of the Ai. Then the isomorphism
above induces an isomorphism A⊗k L → Mn(L).

Theorem 3.5. Br(k) ∼= H2(k̄/k).

Proof. The isomorphism Br(L/k) → H2(L/k) are compatible with the maps
Br(L/k) → Br(L′/k) and H2(L/k) → H2(L′/k) if L′/L/k are finite Galois
extensions. Because of prop. 3.3, Br(k̄) is trivial, so 0 → Br(k̄/k) →
Br(k) → Br(k̄) gives Br(k) ∼= Br(k̄/k), which is the limit of the Br(L/k) for
L a finite Galois extension of k because of prop. 3.4, and H2(k̄/k) is the
limit of the H2(L/k).

Example 3.6. Let k = R. Then R̄ = C, and Br(R) = H2(G,C∗), where
G = Gal(C/R) is cyclic of order 2. Hence H2(G,C∗) = H0

T (G,C∗) =
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(C∗)G/ NormG(C∗) = R∗/R+ = {±1}. The identity element of Br(R) is
represented by the trivial central simple R-algebra R itself.

The nontrivial element is represented by the quaternions H: {1, i, j, k} is
a basis of H as an R-vectorspace, and the multiplication is defined by i2 = −1,
j2 = −1, k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. H is simple
because it is a division algebra, and its center is R because every other element
does not commute with at least one of i, j or k. H represents the nontrivial
element in Br(R) because of the remark 1.12 about the bijection between the
divison algebras with center k and the elements of the Brauer group (H is
non-commutative, so not isomorphic to R).

Example 3.7. For a local field k, Br(k) ∼= Q/Z by theorem 5 of [3], where
the isomorphism is given by the local invariant map invk.

4 Brauer Groups in Class Field Theory

In this section, k always denotes a number field. First, we want to prove
that every element of the Brauer group k splits in some cyclic cyclotomic
extension of k. We need two lemmas.

Lemma 4.1. The map Br(k) → ⊕
v Br(kv) is injective, where the direct sum

goes over all the places v of k.

Proof. This is proved at the beginning of the proof of theorem 4.4.

Lemma 4.2. Let S be a finite set of primes of k. Then for any m ∈ N, there
exists a cyclic cyclotomic extension L/k such that m divides [Lv : Kv] for all
v ∈ S.

Proof. For an arbitrary number field, it is enough to find such an extension
of Q with m · [k : Q] instead of m.

So assume k = Q. For q a prime, let ζ be a primitive qrth root of unity.
Then Gal(Q[ζ]/Q) ∼= (Z/qrZ)∗, which contains a quotient group of order
qs with s ≥ r − 3, so s becomes arbitrarily large for large r. Let L(qr) be
the subextension of Q[ζ]/Q with this Galois group. It is a cyclic cyclotomic
extension of Q.

Using theorems II.7.12 and II.7.13 of [8], we see that [Qp[ζ] : Q] →∞ as
r →∞. Therefore [L(qr)p : Qp] is an arbitrarily large power of q for large r.
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Let q1, . . . , qs be the distinct primes dividing m, and let L = L(qr1
1 ) · · ·L(qrs

s ).
Then L is cyclic because it is the product of cyclic groups of pairwise coprime
order, and after choosing the ri large enough, m divides [Lp : Qp] for all the
finitely many p ∈ S.

Theorem 4.3. Let k be a number field. Then any α ∈ Br(k) maps to
0 ∈ Br(L) for some cyclic cyclotomic extension L/k (depending on α).

Proof. Let (αv) be the image of α in
⊕

Br(kv). Then almost all αv are zero,
and let m be the common denumerator of the nonzero invv(αv) ∈ Q/Z. Let
L be as in the lemma above.

Then invw(αw) = [Lw : kv] · invv(αv) = 0 ∈ Q/Z for all valuations w of
L, i.e. the image of α in Br(Lw) is zero for all w. Because Br(L) injects into⊕

Br(Lw), the image of α in Br(L) is zero.

Theorem 4.4. (Fundamental exact sequence) 0 → B(k) → ⊕
v B(kv) →

Q/Z→ 0 is exact, where the direct sum goes over all places v of k.

Proof. Let L/k be a finite Galois extension with Galois group G. In [4] we
defined CL = IL/L∗ where IL are the ideles and CL is the ideles class group.
This gives us a long exact sequence containing H1(G,CL) → H2(G,L∗) →
H2(G, IL) → H2(G,CL) where H1(G,CL) = 0 by [5], H2(G, L∗) = Br(L/k)
and H2(G, IL) =

⊕
H2(Gv, L

∗
v) =

⊕
Br(Lv/kv) by Prop. 1 of [5]. Therefore

0 → Br(L/k) →
⊕

Br(Lv/kv) → H2(G,CL)

is exact. Let H2(G,CL)′ be the image of the last map.
By passing to the limit for all L, the first terms of this sequence give

lemma 4.1.
The local invariant map gives the isomorphism invv : Br(Lv/kv) →

1
nv
Z/Z, and summing these, we get a surjective map

⊕
Br(Lv/kv) → 1

n0
Z/Z ⊂

1
n
Z/Z, where n0 = lcm(nv).

By Theorem VII.8.1 in [6], we get a (not necessarily exact) complex 0 →
Br(L/K) → ⊕

(Lv/Kv) → 1
n0
Z/Z, so together with the exact sequence

above, this gives a map φ : H2(G,CL)′ → 1
n0
Z/Z.

Suppose n0 = n. Then φ is an isomorphism since it is a surjective map
with #H2(G,CL)′ ≤ #H2(G,CL) ≤ n. So H2(G,CL)′ = H2(G,CL), both
with order n, and 0 → Br(L/k) → ⊕

Br(Lv/kv) → 1
n
Z/Z→ 0 is exact.

If L/k is cyclic, then n0 = n can be proved using the Artin map: Let
m be a formal product of places containing the infinite and ramified ones.
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Then the Artin map Imk → G maps p = pv 7→ Frobp, which has order fp,
and fp = nv since p is unramified. So the image of the Artin map has order
n0 = lcm(nv) ≤ n. But G has order n since L/k is cyclic, and the Artin map
is surjective, so n = n0.

By passing to the direct limit, we get 0 → Br(Qcyck/k) → ⊕
Br((Qcyck)v/kv) →

Q/Z→ 0, and since Br(Qcyck/k) = Br(k) by theorem 4.3 and Br((Qcyck)v/kv) =
Br(kv), the theorem is true.
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