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1 Introduction

The aim of this paper is to prove that the Dedekind zeta function for a number field has a
meromorphic continuation to the complex plane, obtaining the analytic class number formula
with it, and to present some of the applications of these results. In particular, It will be shown
its use in proving Dirichlet’s prime number theorem and in calculating the class number of
quadratic fields.

The proof of the class number formula and analytic continuation of the zeta function
will be complete except for some parts involving technical calculations which would not add
much to the number theory concepts with which this paper tries to deal. It will mainly
follow the proof in the book by Neukirch [2].

We will begin by demonstrating the use of the class number formula to find an expression
for the class number of a quadratic field and prove Dirichlet’s prime number theorem. The
proof of the main result will come after this.

2 Two applications

2.1 Some definitions and main results

The central object studied here is the Dedekind zeta function:

Definition 2.1. The Dedekind zeta function of a number field K is defined by

ζK(s) =
∑

a

1

N(a)s

with the sum running over all the integral ideals of K.
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In this paper N(a) will represent the absolute norm of an ideal, and K will always
be a general number field except when otherwise stated. Although the series used in the
definition converges only for Re(s) > 1, the result we will prove later states that ζK(s) admits
a holomorphic continuation to the whole complex plane except the point s = 1, where the
function has a simple pole. We have the

Theorem 2.2. (Analytic Class Number Formula)

Ress=1(ζK(s)) =
2r1(2π)r2

w
√
|dK |

hR

Here, R represents the regulator of K, defined in [2], chapter 1, 7; dK denotes the
discriminant of K.

In the case K = Q, the zeta function is:

ζ(s) =
∞∑

n=1

1

ns

called the Riemann zeta function. It is generalized by the Dirichlet L-series :

L(χ, s) =
∞∑

n=1

χ(n)

ns

where χ is any character χ : Z −→ C. The analytic continuation for this series will not be
proved in this paper, but it can be found in [2] (the proof resembles closely the one that
will be carried out here). In fact, L(χ, s) can be extended to a holomorphic function in the
whole complex plane, including s = 1, when χ is a nontrivial character (for χ trivial, L(χ, s)
is the Riemann zeta function). We will use this in a moment. We will also need the famous
Euler’s identity:

ζK(s) =
∏

p

(
1− 1

N(p)s

)−1

which in the case of K = Q takes the form

ζ(s) =
∏

p

(
1− 1

ps

)−1

and that can be generalized for the Dirichlet L-series:

L(χ, s) =
∏

p

(
1− χ(s)

ps

)−1

(2.1)

where χ is any character.
Euler’s product is well known for being an analytical form of the theorem of unique

decomposition of ideals into prime ideals in a number field. It can also help us relate the
zeta function for a field to the Riemann zeta function, as we do now for a quadratic number
field.
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2.2 The class number of quadratic number fields

In this section, K = Q(
√

D) will represent a quadratic number field, with D squarefree. It is
not difficult to show that a prime p in Z splits in K depending on the value of the Legendre
symbol (dK

p
) in the following way:

p is...


...unsplit if (dK

p
) = −1

...split into two different primes if (dK

p
) = 1

...split in the form p = p2 if (dK

p
) = 0

Result (8.5) in chapter I of [2] gives the proof of this except when p | 2dK . In this case, if
p | dK then p = (p,

√
D)2 and if p = 2, then:

(2) =


(2) if D ≡ 5(mod 8) (so (dK

2
) = −1)

(2, 1+
√

D
2

)(2, 1−
√

D
2

) if D ≡ 1(mod 8) (so (dK

2
) = 1)

(2, 1 +
√

D)2 if D ≡ 3, 7(mod 8) (so (dK

2
) = 0)

(2,
√

D)2 if D ≡ 2, 6(mod 8) (so (dK

2
) = 0)

Hence, we know all the primes in K, together with their norm, by relating them to primes
in Z. This lets us write the zeta function for K = Q(

√
D) and for any s > 1 as (in the

following, consider p to run over all primes of K and p to run over all primes of Z)

ζK(s) =
∏

p

(
1− 1

N(p)s
)

)−1

=

=
∏

(
dK
p

)=1

(
1− 1

p2s

)−1 ∏
(

dK
p

)=−1

(
1− 1

ps

)−2 ∏
p|dK

(
1− 1

ps

)−1

=

=
∏

(
dK
p

)=1

(
1− 1

ps

)−1(
1 +

1

ps

)−1 ∏
(

dK
p

)=−1

(
1− 1

ps

)−2 ∏
p|dK

(
1− 1

ps

)−1

So we have:
ζK(s) = ζ(s)L(dK , s) for s > 1

where

L(dK , s) :=
∏

(
dK
p

)=1

(
1 +

1

ps

)−1 ∏
(

dK
p

)=−1

(
1− 1

ps

)−1 ∏
p|dK

1 =

=
∏

p

(
1−

(dK

p
)

ps

)−1

=
∞∑

p=1

(dK

n
)

ns
=

= L((
dK

n
), s)

(2.2)
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This last equality is obtained from Euler’s product 2.1; L(dK , s) is a particular instance of
the Dirichlet L-series for the character χ(n) = (dK

n
).

The class number formula gives us the residue of ζK(s) in s = 1. As ζ(s) has residue 1
in this point, the residue of ζK(s) must equal the value of L(dK , s) at s = 1 (L(dK , s) can
be extended to a holomorphic function in C, as was pointed out before, and it has a value
at s = 1, defined by continuity. Equation 2.1 holds for all s 6= 1).

So L(dK , 1) is precisely the value given by the class number formula. If it can be computed
then we can calculate the value of the class number for K (remember we are considering
only quadratic fields). Can it be calculated using the same series that defines it, putting
s = 1?. The answer is yes, but it is not something completely evident: by definition, the
value L(dK , 1) is given by the limit of the series at s = 1, so we have to prove that this limit
coincides with the value of the series in s = 1, this is, that the function defined by the series
is continuous in s = 1. This is in fact true, as is proved in [1] by rewriting the series for
L(dK , s) in a way that makes evident the continuity at s = 1. So now let’s calculate L(dK , 1)
from the series that appears in (2.2).

As a first example, take K = Q(i), with dK = −4. We get:

L(dK , 1) = 1− 1

3
+

1

5
− 1

7
+ · · ·

which can be calculated by noting that

π

4
=

∫ 1

0

dx

1 + x2
=

∫ 1

0

(1− x2 + x4 − x6 + · · · )dx = L(dK , 1)

(A power series can be integrated term by term within its radius of convergence). As Q(i)
has one pair of complex conjugate embeddings, has four roots of unity and regulator R = 1,
the class number formula gives L(dK , 1) = (2π/4

√
4)h = (π/4)h. Hence, h = 1 in this case.

For K = Q(
√

5) we can do something analogous:

L(dK , 1) = (1− 1

2
− 1

3
+

1

4
) + (

1

6
− 1

7
− 1

8
+

1

9
) =

=

∫ 1

0

(1− x− x2 + x3)(1 + x5 + x10 + x15 + · · · )

=

∫ 1

0

1− x− x2 + x3

1− x5
dx (2.3)

This is an integral that can be calculated using well-known methods, or even only approx-
imated, in order to compare it to the value given by the class number formula. Knowing

that we have two complex embeddings, two roots of unity and that R = log
(√

5+1
2

)
(the

logarithm of the fundamental unit), one gets:

L(dK , 1) =
22

2
√

5
h log

(√
5 + 1

2

)
=

2√
5

log

(√
5 + 1

2

)
h
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As h is an integer, a close enough approximation to the integrals lets us conclude that h = 1
(note that, curiously, this gives us the exact value of the integral).

In general, following the same procedure we obtain:

L(dK , 1) =

∫ 1

0

fdK
(x)dx

1− x|dK |
, where fdK

(x) =

|dK |∑
t=1

xt−1

(
dK

t

)
This integral can be approximated as before to obtain h. Thus, a formula for the class
number of a quadratic field K is given by:

h =
1

R

w
√
|dK |

2r1(2π)r2

∫ 1

0

fdK
(x)dx

1− x|dK |

As a curiosity, I will include a more explicit form of this formula for the class number
taken from [3]. The class number h of a quadratic field can be written as:

h =

{
− 1

2 log η

∑dK−1
r=1 (dK

r
) sin( πr

dK
) for dK > 0

− w
2|dK |

∑|dK |−1
r=1 (dK

r
)r for dK < 0

(2.4)

where η is the fundamental unit of the field of positive discriminant, (dK/r) denotes the
Kronecker symbol and w is the number of roots of unity in the field.

2.3 Dirichlet’s Prime Number Theorem

This well known result states that

Theorem 2.3. If a and m are coprime natural numbers, then there are infinitely many
primes in the sequence (a + kn), with k ∈ N

Its proof can surprisingly be reduced to the statement that L(χ, 1) 6= 0 for any χ non-
trivial character modulo m by writing:

log L(χ, s) = −
∑

log(1− χ(p)

ps
) =

(
use log(1− x) = −

∞∑
n=1

xn

n
for |x| < 1

)

=
∑

p

∞∑
m=1

χ(pm)

mpms
=
∑

p

χ(p)

ps
+

∞∑
m=2

∑
p

χ(pm)

mpms
=

=
∑

p

χ(p)

ps
+ g(s)

where g(s) is defined by a series which is convergent for Re(s) > 1/2 (note that it starts in
m = 2), so it is bounded near s = 1.
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Now sum over all characters χ modulo m and multiply by χ(a−1), with a any natural
number prime to m:

∑
χ

χ(a−1) log L(χ, s) =
∑

χ

∑
p

χ(a−1)

ps
+ g(s) =

(interchange the summation and break
∑

p

into classes mod m)

=
∑
b=1

m
∑

χ

χ(a−1b)
∑

p≡b (m)

1

ps
+ g(s) =

=
∑

p≡a (m)

φ(m)

ps
+ g(s)

as the sum in χ has the value

∑
χ

χ(a−1b) =

{
0 , a 6= b

φ(m) , a = b

Now that we have the result∑
χ

χ(a−1) log L(χ, s) =
∑

p≡a (m)

φ(m)

ps
+ g(s) (2.5)

knowing that L(χ, s) 6= 0 for χ nontrivial would tell us that the left hand side tends to +∞
as s tends to 1, as everything there is finite except for χ0 =trivial character mod m, for
which:

log L(χ0, s) =
∑
p|m

log(1− p−s) + log ζ(s) ,

expression which tends to +∞ as s → 1. The right hand side then tends to +∞ too, so the
sum cannot consist of finitely many terms and we obtain Dirichlet’s prime number theorem.

So the problem is to show that L(χ, 1) 6= 0 for a nontrivial character χ. This can be
done in many ways, of which the most common is to relate Dirichlet L-series to the zeta
function of some field. We have already done this in a particular case when we said that
L(χ, 1) =(expression from the class number formula) when χ(n) = (dk/n). Of course, this
says that L(χ, 1) 6= 0 for this χ. Can we find something like this for any character mod m?.
It can be done, and in different ways. In [2], Neukirch proves that:

ζK(s) = G(s)
∏
χ

L(χ, s) for K = Q(ζm)

where G(s) is some bounded function defined in C. We see then from the analytic continua-
tion of ζK that L(χ, 1) 6= 0 for χ nontrivial (the only pole of the right hand side is provided
by L(χ0, s) at s = 1, which is simple as the one for ζK(s)).
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However, that L(χ, 1) 6= 0 can also be deduced using our previous result that L(dK , s) 6= 0
for K a quadratic number field. This is carried out in [1], chapter X, section 11, where it is
proved that L(χ, s) = L((dK

n
), s)f(s) for f a nowhere zero function and χ a real nontrivial

character. For a complex nontrivial character in can be seen that if L(χ, 1) = 0 then the
left hand side of 2.5 tends to −∞ as s → 1, which is impossible since the right hand side is
positive.

3 Analytic Continuation of the Dedekind Zeta Func-

tion and the Class Number Formula

3.1 Introduction

The object studied in this section is the Dedekind zeta function we defined in 2.1. It is a
natural generalization of the Riemann zeta function, which was originally studied as a tool
that gives useful information on number theory problems such as the distribution of prime
numbers, and extends the methods used in Q to a general number field. Hecke L-series (not
defined here) are, analogously a generalization of Dirichlet L-series.

All of these are initially defined as complex functions on certain region of C, and each
of them can be later proved to have a meromorphic extension to all of C and to satisfy a
functional equation relating their values in s to those in 1 − s. The overall structure of
the proof of these results is the same for all of them, and uses the Mellin transform as a
fundamental tool:

Definition 3.1. For a continuous function f : R∗
+ −→ C, the Mellin transform of f is:

L(f, s) =

∫ ∞

0

(f(y)− f(∞)) ys dy

y

provided that both the integral and the limit f(∞) = limy→∞ f(y) exist.

The next theorem is a central part of the proof. The statement is taken from the book
of Neukirch [2]:

Theorem 3.2. Let f, g : R∗
+ −→ C be continuous functions such that

f(y) = a0 + O(e−cyα

), g(y) = b0 + O(e−cyα

)

for y →∞, with positive constants c, α. If these functions satisfy the equation

f

(
1

y

)
= Cykg(y)

for some real number k > 0 and some complex number C 6= 0, then one has:
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1. The integrals L(f, s) and L(g, s) converge absolutely and uniformly if s varies in an
arbitrary compact domain contained in {s ∈ C | Re(s) > k}. They are therefore holo-
morphic functions on {s ∈ C | Re(s) > k}. They admit holomorphic continuations to
C\ {0, k}.

2. They have simple poles at s = 0 and s = k with residues

Ress=0 L(f, s) = −a0, Ress=0 L(f, s) = Cb0

Ress=0 L(g, s) = −b0, Ress=0 L(g, s) = C−1a0

3. They satisfy the functional equation

L(f, s) = CL(g, k − s)

3.2 Structure of the Proof

The proof to come will follow the steps below, which are shared with proofs of the analytic
continuation of other types of zeta functions:

1. First, the function is defined by a series that converges only for s/ Re s > 1.

2. Then, the expression for the series is manipulated introducing the gamma function or
a suitable generalization, to express it as the Mellin transform of some theta series
(defined later) or related function. The modified zeta function is called completed zeta
function.

3. It is proved then that the function involving the theta series satisfies the conditions of
theorem 3.2.

4. This theorem is the one that finally justifies the extension and functional equation for
the completed zeta function.

5. The functional equation for the original zeta function is deduced from this, using known
functional equations for the Γ function involved.

This process also leads to the determination of the residues of the zeta function in its
poles; the formula for the residue of the Dedekind zeta function 2.1 is known as the analytic
class number formula.

3.3 The Gamma Function

As explained above, we will need the real gamma function and its generalization to number
fields in what follows.

8



Definition 3.3. The real gamma function is defined for Re(s) > 0 by the integral:

Γ(s) =

∫ ∞

0

e−yys dy

y

The following properties will be relevant for our purpose:

Proposition 3.4. 1. The gamma function is analytic and admits a meromorphic contin-
uation to all of C.

2. It is nowhere zero and its only poles happen at s = 0,−1,−2 . . . They are all simple;
the residue at −n is (−1)n/n!.

3. It satisfies the functional equations:

(a) Γ(s)Γ(1− s) = π
sin πs

(b) Γ(s)Γ(s + 1
2
) = 2

√
π

22s Γ(2s)

(c) Γ(s + 1) = sΓ(s)

The functional equation in 3.4, (3a) can be proved without first extending the gamma
function (for the values of s for which it would make sense); this would also give a way of
proving that it has a meromorphic continuation to the complex plane, and would yield its
poles. The other functional equations will be used when we prove the one satisfied by the
higher dimensional gamma function, a generalization of the present one.

To define this generalized gamma function we will eventually write it as the same integral
we used for Γ, this time over some subset of the trace-zero Minkowski space of a number
field that will be the analogue of R∗

+ in this setting. To achieve this first we need to define
this subset and establish some notation conventions, and then we need to fix a measure on
it.

Let K be a number field. Denote G = Gal(K|Q). We will denote by C the associated
Minkowski space and by R the trace-zero Minkowski space of K. We will denote, for x =
(xτ )τ∈G ∈ C, x = (xτ )τ∈G, as usual. We will also write:

R± = {x ∈ R | x = x} (the analogue of R\ {0}) (3.1)

R∗
+ = {x ∈ R± | x > 0} (analogue of R∗

+) (3.2)

H = R± + iR∗
+ (analogue of the upper half plane of C) (3.3)

The x > 0 in the second line is taken to mean that every component of x is greater than
zero. We can also define the functions | | : R∗ −→ R∗

+ and log : R∗
+ −→ R±, which act on

each component as their real analogues. Recall that in the Minkowski space we also have a
scalar product given by 〈x, y〉 =

∑
τ xτyτ . If z = (zτ ) and p = (pτ ) are in C, we will write

zp = (zpτ
τ )
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provided that no component of z is real negative or 0. Here, complex exponentiation is
defined in the usual way, using the principal branch of the logarithm.

Now, to fix a Haar measure in R∗
+, denote by p a general conjugation class in X (this is,

p = {σ, σ} for some σ ∈ G, with either one or two elements depending on whether σ is real
or complex). Define an isomorphism:

Φ : R∗
+

∼=−→
∏

p

R∗
+

where the component of Φ(x) corresponding to p = {σ, σ}, for x = (xτ )τ∈G, is given by xσ if
p is real and by x2

σ if p is complex (note that for x ∈ R∗
+, xσ = xσ ∈ R).

Denote by dy
y

the Haar measure on R∗
+ induced by this isomorphism, taking the product

measure
∏

p
dt
t

in the image space. It is called the canonical measure on R∗
+.

Now we are prepared for the

Definition 3.5. Given a number field K and using the same notation as before, we define
its associated gamma function by the following integral, valid for all s ∈ C such that all of
its components have positive real part:

ΓK(s) =

∫
R∗

+

N(e−yys)
dy

y

where N(· · · ) denotes the usual norm in the Minkowski space (the product of the compo-
nents).

The problem of whether it is well defined or not is easily reduced to the study of the real
gamma function using the isomorphism we defined before, which reduces the integral over
R∗

+ to a product of real integrals. The result, for s = (sσ)σ∈G is:

ΓK(s) =
∏

p

Γp(sp)

where sp = sσ if p = {σ} a real embedding, sp = (sσ, sσ) if p = {σ, σ} is a complex one, and:

Γp(sp) =

{
Γ(sp) if p is real

21−Tr(sp)Γ(Tr(sp)) if p is complex
(3.4)

Note that this formula proves that ΓK can be extended to all of C and gives a straight-
forward way to calculate its poles once we know those of the real gamma function.

Apart from this general gamma function itself, later we will need some closely related
functions, namely:

ΓK(s) = ΓK(s · 1) = 2(1−2s)r2Γ(s)r1Γ(2s)r2 , where

1 = (1, . . . , 1) is the unit element in C, s ∈ C
r1 = number of real conjugation classes in G

r2 = number of complex conjugation classes in G

(3.5)
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And

LK(s) = π−
ns
2 ΓK(

s

2
) (3.6)

with n the total number of embeddings of K into C (n = r1 + 2r2).
The properties of the real gamma function are translated to properties of the generalized

gamma function and the functions we have just defined. I’ll state only the ones that we will
need later:

Proposition 3.6. The real gamma function satisfies:

1. LK(1) = 1
πr2

2. LK is nowhere zero and has a simple pole at s = 0

3. LK(s) = A(s)LK(1− s) , where

A(s) = |dK |s−
1
2

(
cos

πs

2

)r1+r2
(
sin

πs

2

)r2

LC(s)n

3.4 Theta Series

Definition 3.7 (Theta Series). For a complete lattice Γ of R, the theta series associated
to it is defined by:

θΓ(z) =
∑
g∈Γ

eπi〈gz,g〉 for z ∈ H.

Theorem 3.8. (Transformation formula for the theta series)

θΓ(−1

z
) =

√
N(z/i)

vol(Γ)
θΓ′(z)

where Γ′ is the lattice dual to Γ, defined by:

Γ′ = {g′ ∈ R | 〈g, g′〉 ∈ Z∀g ∈ Γ}

The proof of this transformation formula is a technical one. It is obtained from the
Poisson summation formula relating the sum of a function f over a complete lattice Γ in R
and the sum of its Fourier transform f̂ over the lattice dual to Γ. The formula is:∑

g in Γ

f(g) =
1

vol(Γ)

∑
g′∈Γ′

f̂(g′) (3.7)

where vol(Γ) is the volume of a fundamental mesh of Γ, and the Fourier transform of f is
defined by:
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f̂(y) =

∫
R

f(x)e−2πi〈x,y〉dx

To obtain the theta transformation formula Neukirch actually obtains a more general one
for the functions θp(a, b, z), defined as follows (in the next definition, an element p ∈

∏
τ Z

is called admissible if all its components are either zero or one, and at least one component
in every complex conjugation class is zero):

Definition 3.9. For a, b ∈ R and any admissible p ∈
∏

τ Z we define:

θp
Γ(a, b, z) =

∑
g∈Γ

N((a + g)p)eπi〈(a+g)z,a+g〉+2πi〈b,g〉

This series converges absolutely and uniformly on compact subsets of R×R×H (and,
in particular, the series θΓ(z) converges absolutely and uniformly in compact subsets of H,
as it is a particular case of this one when a = b = p = 0). To obtain theorem (3.8) as a
particular case of the more general formula

θp
Γ(a, b,−1

z
) =

(
iTr(p)e2πi〈a,b〉 vol(Γ)

)−1
N
(
(
z

i
)p+ 1

2

)
θp
Γ′(−b, a, z) (3.8)

we apply Poisson summation formula (3.7) to a function that closely resembles the terms
that are added in the definition for θp

Γ(a, b, z). This part of the proof will be omitted here,
as it would take up too much space. It can again be found in Neukirch [2].

3.5 The Dedekind Zeta Function

Recall the definition we gave in 2.1:

Definition 3.10. The Dedekind zeta function of a number field K is defined by

ζK(s) =
∑

a

1

N(a)s

with the sum running over all the integral ideals of K.

And the theorem we want to prove, taken from [2]:

Theorem 3.11. (Analytic continuation of the Dedekind zeta function)

1. The Dedekind zeta function ζK(s) has an analytic continuation to C\ {1}.

2. At s = 1 it has a simple pole with residue

Ress=1 ζK(s) =
2r1(2π)r2

w
√
|dK |

hR
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3. It satisfies the functional equation

ζK(1− s) = B(s)ζK(s)

where

B(s) = |dK |s−
1
2

(
cos

πs

2

)r1+r2
(
sin

πs

2

)r2

LC(s)n

3.5.1 Step 2

We will follow now the steps mentioned in section 3.2. Step 1 is just the definition of the
zeta function, so we start with step 2.

First, we write the series for ζK as a summation over the elements of the different ideal
classes.

ζK(s) =
∑

K

ζ(K, s)

ζ(K, s) =
∑
a∈K

integral

1

N(a)s

The ζ(K, s) are called partial zeta functions. Also, we use the following bijection to
enumerate more explicitly the integral ideals in a certain ideal class. Take any ideal class K.
Its inverse contains some integral ideal, so we can fix a integral such that K is the class of
a−1. Then,

a∗/o∗
∼=−→ {b ∈ K | b integral}

a 7→ b = aa−1
(3.9)

It is not difficult to see that this is indeed a bijection: aa−1 is integral by definition of the
inverse of a, and two different a, a′ give the same b only when (a) = (a′), so the map is
injective. Surjectivity follows from the fact that for any b ∈ K, ab is principal and contained
in a.

This allows us to write the partial zeta functions as:

ζ(K, s) = N(a)s
∑

a∈a∗/o∗

1

|N(a)|s

Now we will relate this expression to an integral using the gamma function ΓK defined in
3.4. In the expression for Γ,

ΓK(s) =

∫
R∗

+

N(e−yys)
dy

y

substitute in the integral y 7→ π |a|2 (y/d
1/n
a ), where a is any complex number, | | denotes

the complex norm and da is the absolute value of the discriminant of a. We obtain:

|dK |s π−nsΓK(s)
N(a)2s

|N(a)|2s =

∫
R∗

+

e
−π

〈
ay/d

1/n
a ,a

〉
N(y)s dy

y
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Then sum with a running over a complete system of representatives R of a∗/o∗ and get:

|dK |s π−nsΓK(s)ζ(K, 2s) =

∫
R∗

+

g(y) N(y)s dy

y

with

g(y) =
∑
a∈R

e
−π

〈
ay/d

1/n
a ,a

〉

The function
Z∞(s) = |dK |s/2 π−ns/2ΓK(s/2) = |dK |s/2 LK(s)

is called the Euler factor at infinity of the zeta function ζ(K, s) (recall the definition of LK

in (3.6)), and then the completed zeta function is written as

Z(K, s) = Z∞(s)ζ(K, s)

The sum for g runs over R, while to relate g to the theta series from definition (3.7) it
would be necessary that it run over a, which can be viewed as a complete lattice in Minkowski
space. To write it in this way, break R∗

+ as S × R∗
+ with S =

{
x ∈ R∗

+ | N(x) = 1
}
, and

break S further into
S =

⋃
η∈o∗

η2F

where F is a fundamental domain for the action of the group

|o∗|2 =
{
|ε|2 | ε ∈ o∗

}
on S. The measure d∗x is defined by being the only one such that

dy

y
= d∗x× dt

t

when R∗
+ is decomposed as the product S × R∗

+ (the other measures denote the canonical
Haar measures on the respective spaces). It can then be seen that:

Z(K, 2s) =
1

w

∫ ∞

0

(∫
F

θa(ixt1/n)d∗x− vol(F )

)
tsdt (3.10)

where w is the number of roots of unity in K. This w arises as the number of elements in the
kernel of o∗ −→ |o∗|, which was proved to be the number of roots of unity when we proved
Dirichlet’s units theorem. Expression (3.10) does have the form of a Mellin transform,

Z(K, 2s) = L(f, s) for f(t) :=
1

w

∫
F

θa(ixt1/n)d∗x

as we will see later.
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3.5.2 Step 3

To apply theorem (3.2) we still need some details. The first one is to calculate vol(F ), which
can be seen to be equal to 2r−1R, where R is the regulator of the number field K. The second
one is to find the functional equation satisfied by f in order to be able to use it when finding
the functional equation for the completed zeta function itself. For this, write f(t) ≡ fF (a, t)
to include explicitly the dependence on F and a and use the functional equation (3.8). The
result is:

fF (a,
1

t
) = t1/2fF−1((aD)−1, t)

fF (a, t) =
2r−1

w
R + O(e−ct1/n

) for t →∞, c > 0

where D is the different of K | Q, that appears here because (aD)−1 is the lattice dual to a

when ideals are regarded as lattices in Minkowski space.

3.5.3 Step 4

Finally, the resulting functional equation for the partial completed zeta functions is:

Z(K, s) = Z(K′, 1− s) where KK′ = [D] , the ideal class of D (3.11)

And the values of its residues in 0 and 1 are, respectively

−2r

w
R and

2r

w
R

An immediate consequence of this is the functional equation for the completed zeta
function (obtained adding the partial ones), which has exactly the same form. The residues
are h times those of the partial functions, for h the class number of K, as we sum over the
h classes to get the completed zeta function.

3.5.4 Step 5

From this we can deduce the functional equation for the Dedekind zeta function easily as
follows:

We have that ζK(s) = Z∞(s)−1ZK(s). As Z∞(s) = |dK |s/2 LX(s) we see that Z∞ is only
zero at s = 0, so it cancels the pole of ZK(s) at this point. Hence, ζK(s) can be extended
to the complex plane with an only pole at s = 1 as can be seen from this expression, and
its residue at s = 1 is the residue of ZK(s) times Z∞(1)−1 (as Z∞(s) has no pole at s = 1).
This gives us the formula for the residue at s = 1:

Ress=1 ζK(s) =
2r1(2π)r2

w
√
|dK |

hR

which is called the analytic class number formula.
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For the functional equation of ζK , note that using 3.6 we have an equation for Z∞(s):

Z∞(1− s) = |dK |
1−s
2 LK(1− s)

= |dK |
s
2 |dK |

1
2
−s A(s)−1LK(s)

= |dK |
1
2
−s A(s)−1Z∞(s)

(3.12)

So ζK satisfies:

ζK(1− s) = Z∞(1− s)−1ZK(1− s)

= |dK |s−
1
2 A(s)Z∞(s)−1ZK(s)

= |dK |s−
1
2 A(s)ζK(s)

(3.13)

In short,
ζK(1− s) = B(s)ζK(s)

with

B(s) = |dK |s−
1
2

(
cos

πs

2

)r1+r2
(
sin

πs

2

)r2

LC(s)n

We have thus proved theorem (3.11).
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