Relative *p*-adic Hodge Theory

Ruochuan Liu

Institute for Advanced Study

Witt Vectors, Foliations, and Absolute De Rham Cohomology Nagoya University, Japan, Nov 22-26, 2010

 $G_K := \operatorname{Gal}(\overline{K}/K).$

For a finite dimensional \mathbb{F}_p -vector space V equipped with a continuous G_K -action, we define

$$D(V) = (V \otimes_{\mathbb{F}_p} \overline{K})^{G_K}.$$

Theorem (Lang)

The functor $V \mapsto D(V)$ gives a rank preserving equivalence of categories from the category of discrete representations of G_K on finite dimensional \mathbb{F}_p -vector spaces to the category of φ -modules over K; a quasi inverse functor is given by $D \mapsto V(D) = (D \otimes_K \overline{K})^{\varphi=1}$.

For any ring S equipped with an endomorphism φ , a φ -module over S is a finite free S-module M equipped with a semilinear φ -action such that M is isomorphic to its φ -pullback as an S-module.

 $G_K := \operatorname{Gal}(\overline{K}/K).$

For a finite dimensional \mathbb{F}_p -vector space V equipped with a continuous G_K -action, we define

$$D(V) = (V \otimes_{\mathbb{F}_p} \overline{K})^{G_K}.$$

Theorem (Lang)

The functor $V \mapsto D(V)$ gives a rank preserving equivalence of categories from the category of discrete representations of G_K on finite dimensional \mathbb{F}_p -vector spaces to the category of φ -modules over K; a quasi inverse functor is given by $D \mapsto V(D) = (D \otimes_K \overline{K})^{\varphi=1}$.

For any ring S equipped with an endomorphism φ , a φ -module over S is a finite free S-module M equipped with a semilinear φ -action such that M is isomorphic to its φ -pullback as an S-module.

 $G_K := \operatorname{Gal}(K/K).$

For a finite dimensional \mathbb{F}_p -vector space V equipped with a continuous G_K -action, we define

$$D(V)=(V\otimes_{\mathbb{F}_p}\overline{K})^{G_K}.$$

Theorem (Lang)

The functor $V\mapsto D(V)$ gives a rank preserving equivalence of categories from the category of discrete representations of G_K on finite dimensional \mathbb{F}_p -vector spaces to the category of φ -modules over K; a quasi inverse functor is given by $D\mapsto V(D)=(D\otimes_K\overline{K})^{\varphi=1}$.

For any ring S equipped with an endomorphism φ , a φ -module over S is a finite free S-module M equipped with a semilinear φ -action such that M is isomorphic to its φ -pullback as an S-module.

 $G_K := \operatorname{Gal}(\overline{K}/K).$

For a finite dimensional \mathbb{F}_p -vector space V equipped with a continuous G_K -action, we define

$$D(V)=(V\otimes_{\mathbb{F}_p}\overline{K})^{G_K}.$$

Theorem (Lang)

The functor $V \mapsto D(V)$ gives a rank preserving equivalence of categories from the category of discrete representations of G_K on finite dimensional \mathbb{F}_p -vector spaces to the category of φ -modules over K; a quasi inverse functor is given by $D \mapsto V(D) = (D \otimes_K \overline{K})^{\varphi=1}$.

For any ring S equipped with an endomorphism φ , a φ -module over S is a finite free S-module M equipped with a semilinear φ -action such that M is isomorphic to its φ -pullback as an S-module.

$$D(V)=(V\otimes_{\mathbb{Z}_p}W(\overline{K}))^{G_K}.$$

Corollary

The functor $V \mapsto D(V)$ gives a rank preserving equivalence of categories from the category of continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over W(K); a quasi inverse functor is given by $D \mapsto V(D) = (D \otimes_{W(K)} W(\overline{K}))^{\varphi=1}$.

Now we further equip K with a complete multiplicative nonarchimedean norm $|\cdot|$.

Definition

For r>0, define $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ the ring of overconvergent Witt vectors of radius r to be the set of $f=\sum_{i=0}^{\infty}p^i[x_i]\in W(K)$ for which $\lim_{i\to\infty}p^{-i}|x_i|^r=0$. We define the norm $|\cdot|_r$ on $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ by setting $|f|_r=\max_{i\in\mathbb{N}}\{p^{-i}|x_i|^r\}$. Then $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ is complete with respect to $|\cdot|_r$. Let $\widetilde{\mathcal{R}}_K^{\mathrm{int}}=\cup_{r>0}\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$.

$$D(V) = (V \otimes_{\mathbb{Z}_p} W(\overline{K}))^{G_K}.$$

Corollary

The functor $V\mapsto D(V)$ gives a rank preserving equivalence of categories from the category of continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over W(K); a quasi inverse functor is given by $D\mapsto V(D)=(D\otimes_{W(K)}W(\overline{K}))^{\varphi=1}$.

Now we further equip K with a complete multiplicative nonarchimedean norm $|\cdot|$.

Definition

For r>0, define $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ the ring of overconvergent Witt vectors of radius r to be the set of $f=\sum_{i=0}^{\infty}p^i[x_i]\in W(K)$ for which $\lim_{i\to\infty}p^{-i}|x_i|^r=0$. We define the norm $|\cdot|_r$ on $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ by setting $|f|_r=\max_{i\in\mathbb{N}}\{p^{-i}|x_i|^r\}$. Then $\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$ is complete with respect to $|\cdot|_r$. Let $\widetilde{\mathcal{R}}_K^{\mathrm{int}}=\cup_{r>0}\widetilde{\mathcal{R}}_K^{\mathrm{int},r}$.

$$D^{\dagger}(V) = (V \otimes_{\mathbb{Z}_p} \widetilde{\mathcal{R}}_{\overline{K}}^{int})^{G_K}.$$

Theorem

The functor $V\mapsto D^\dagger(V)$ gives a rank preserving equivalence of categories from continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over $\widetilde{\mathcal{R}}_K^{\rm int}$; a quasi inverse functor is given by $D^\dagger\mapsto V(D^\dagger)=(D^\dagger\otimes_{\widetilde{\mathcal{R}}_K^{\rm int}}\widetilde{\mathcal{R}}_K^{\rm int})^{\varphi=1}.$

Let $\mathcal{R}_K^{\mathrm{bd},r} = \mathcal{R}_K^{\mathrm{int},r}[1/p]$. Let \mathcal{R}_K^r be the Fréchet completion of $\mathcal{R}_K^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$. Let $\widetilde{\mathcal{R}}_K^{\mathrm{bd}} = \cup_{r>0} \widetilde{\mathcal{R}}_K^{\mathrm{bd},r}$, and let $\widetilde{\mathcal{R}}_K = \cup_{r>0} \widetilde{\mathcal{R}}_K^r$. Let $\widetilde{\mathcal{E}}_K = W(K)[1/p]$. A φ -module over $\widetilde{\mathcal{E}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{bd}}$ or $\widetilde{\mathcal{R}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{int}}$.

$$D^{\dagger}(V) = (V \otimes_{\mathbb{Z}_p} \widetilde{\mathcal{R}}_{\overline{K}}^{\underline{\mathsf{int}}})^{\mathsf{G}_K}.$$

Theorem

The functor $V\mapsto D^\dagger(V)$ gives a rank preserving equivalence of categories from continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over $\widetilde{\mathcal{R}}_K^{\rm int}$; a quasi inverse functor is given by $D^\dagger\mapsto V(D^\dagger)=(D^\dagger\otimes_{\widetilde{\mathcal{R}}_K^{\rm int}}\widetilde{\mathcal{R}}_K^{\rm int})^{\varphi=1}.$

Let $\widetilde{\mathcal{R}}_{K}^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_{K}^{\mathrm{int},r}[1/p]$. Let $\widetilde{\mathcal{R}}_{K}^{r}$ be the Fréchet completion of $\widetilde{\mathcal{R}}_{K}^{\mathrm{bd},r}$ under the norms $|\cdot|_{s}$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_K^{\mathrm{bd}} = \cup_{r>0} \widetilde{\mathcal{R}}_K^{\mathrm{bd},r}$, and let $\widetilde{\mathcal{R}}_K = \cup_{r>0} \widetilde{\mathcal{R}}_K^r$. Let $\widetilde{\mathcal{E}}_K = W(K)[1/p]$. A φ -module over $\widetilde{\mathcal{E}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{bd}}$ or $\widetilde{\mathcal{R}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{int}}$.

$$D^{\dagger}(V) = (V \otimes_{\mathbb{Z}_p} \widetilde{\mathcal{R}}_{\overline{K}}^{int})^{G_K}.$$

Theorem

The functor $V\mapsto D^\dagger(V)$ gives a rank preserving equivalence of categories from continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over $\widetilde{\mathcal{R}}_K^{\rm int}$; a quasi inverse functor is given by $D^\dagger\mapsto V(D^\dagger)=(D^\dagger\otimes_{\widetilde{\mathcal{R}}_K^{\rm int}}\widetilde{\mathcal{R}}_K^{\rm int})^{\varphi=1}.$

Let $\widetilde{\mathcal{R}}_{K}^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_{K}^{\mathrm{int},r}[1/p]$. Let $\widetilde{\mathcal{R}}_{K}^{r}$ be the Fréchet completion of $\widetilde{\mathcal{R}}_{K}^{\mathrm{bd},r}$ under the norms $|\cdot|_{s}$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_K^{\mathrm{bd}} = \cup_{r>0} \widetilde{\mathcal{R}}_K^{\mathrm{bd},r}$, and let $\widetilde{\mathcal{R}}_K = \cup_{r>0} \widetilde{\mathcal{R}}_K^r$. Let $\widetilde{\mathcal{E}}_K = W(K)[1/p]$.

A φ -module over \mathcal{E}_K is called étale if it is the base change of a φ -module over W(K). A φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{bd}}$ or $\widetilde{\mathcal{R}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{int}}$.

$$D^{\dagger}(V) = (V \otimes_{\mathbb{Z}_p} \widetilde{\mathcal{R}}_{\overline{K}}^{int})^{G_K}.$$

Theorem

The functor $V\mapsto D^\dagger(V)$ gives a rank preserving equivalence of categories from continuous representations of G_K on finite free \mathbb{Z}_p -modules to the category of φ -modules over $\widetilde{\mathcal{R}}_K^{\rm int}$; a quasi inverse functor is given by $D^\dagger\mapsto V(D^\dagger)=(D^\dagger\otimes_{\widetilde{\mathcal{R}}_K^{\rm int}}\widetilde{\mathcal{R}}_K^{\rm int})^{\varphi=1}.$

Let $\widetilde{\mathcal{R}}_K^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_K^{\mathrm{int},r}[1/p]$. Let $\widetilde{\mathcal{R}}_K^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_K^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_{K}^{\text{bd}} = \cup_{r>0} \widetilde{\mathcal{R}}_{K}^{\text{bd},r}$, and let $\widetilde{\mathcal{R}}_{K} = \cup_{r>0} \widetilde{\mathcal{R}}_{K}^{r}$. Let $\widetilde{\mathcal{E}}_{K} = W(K)[1/p]$.

A φ -module over $\widetilde{\mathcal{E}}_K$ is called étale if it is the base change of a φ -module over W(K). A φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{bd}}$ or $\widetilde{\mathcal{R}}_K$ is called étale if it is the base change of a φ -module over $\widetilde{\mathcal{R}}_K^{\mathrm{int}}$.

Theorem

The following categories are equivalent.

- (1) The category of continuous representations of G_K on finite dimensional \mathbb{Q}_p -vector spaces.
- (2) The category of étale φ -modules over $\widetilde{\mathcal{E}}_K$.
- (3) The category of étale φ -modules over $\widetilde{\mathcal{R}}_{K}^{\mathrm{bd}}$.
- (4) The category of étale φ -modules over $\widetilde{\mathcal{R}}_K$.

More precisely, the functors from (3) to (2) and from (3) to (4) are base extensions.

For a p-adic representation we mean a finite dimensional \mathbb{Q}_p -vector space equipped with a continuous action of the the absolute Galois group of (mixed characteristic) local fields with perfect residue field. Fontaine's theory of φ , Γ -modules classifies p-adic representations into various type of (φ, Γ) -modules which we will explain as below.

we restrict to $G_{\mathbb{Q}_p}$ -representations for simplicity. Let $H=\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p(\mu_{p^\infty}))$, and let $\Gamma=G_{\mathbb{Q}_p}/H=\operatorname{Gal}(\mathbb{Q}_p(\mu_{p^\infty})/\mathbb{Q}_p)$. The starting point of Fontaine's theory is the following

 ${\sf Theorem}$ $({\sf Fontaine-Wintenberger})$

$$\operatorname{Gal}(\mathbb{F}_p((\bar{\pi}))^{\operatorname{sep}}/\mathbb{F}_p((\bar{\pi}))) \cong H$$

Define

$$\mathcal{O}_{\mathcal{E}} = \varprojlim_{n \to \infty} \frac{\mathbb{Z}_p[[\pi]][\pi^{-1}]}{(p^n)} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Z}_p, \lim_{i \to -\infty} |a_i|_p = 0 \right\}.$$

which is a cohen ring with residue field $\mathbb{F}_p((\bar{\pi}))$. Let $\mathcal{E} = \mathcal{O}_{\mathcal{E}}[1/p]$.

For a p-adic representation we mean a finite dimensional \mathbb{Q}_p -vector space equipped with a continuous action of the the absolute Galois group of (mixed characteristic) local fields with perfect residue field. Fontaine's theory of φ , Γ -modules classifies p-adic representations into various type of (φ, Γ) -modules which we will explain as below.

We restrict to $G_{\mathbb{Q}_p}$ -representations for simplicity. Let

 $H = \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p(\mu_{p^{\infty}}))$, and let $\Gamma = G_{\mathbb{Q}_p}/H = \operatorname{Gal}(\mathbb{Q}_p(\mu_{p^{\infty}})/\mathbb{Q}_p)$. The starting point of Fontaine's theory is the following

Theorem (Fontaine-Wintenberger)

$$\operatorname{Gal}(\mathbb{F}_p((\bar{\pi}))^{\operatorname{sep}}/\mathbb{F}_p((\bar{\pi}))) \cong H$$

Define

$$\mathcal{O}_{\mathcal{E}} = \varprojlim_{n \to \infty} \frac{\mathbb{Z}_p[[\pi]][\pi^{-1}]}{(p^n)} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Z}_p, \lim_{i \to -\infty} |a_i|_p = 0 \right\}.$$

which is a cohen ring with residue field $\mathbb{F}_p((\bar{\pi}))$. Let $\mathcal{E} = \mathcal{O}_{\mathcal{E}}[1/p]$.

For a p-adic representation we mean a finite dimensional \mathbb{Q}_p -vector space equipped with a continuous action of the the absolute Galois group of (mixed characteristic) local fields with perfect residue field. Fontaine's theory of φ , Γ -modules classifies p-adic representations into various type of (φ, Γ) -modules which we will explain as below.

We restrict to $G_{\mathbb{Q}_p}$ -representations for simplicity. Let

 $H = \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p(\mu_{p^{\infty}}))$, and let $\Gamma = G_{\mathbb{Q}_p}/H = \operatorname{Gal}(\mathbb{Q}_p(\mu_{p^{\infty}})/\mathbb{Q}_p)$. The starting point of Fontaine's theory is the following

Theorem (Fontaine-Wintenberger)

$$\operatorname{Gal}(\mathbb{F}_p((\bar{\pi}))^{\operatorname{sep}}/\mathbb{F}_p((\bar{\pi}))) \cong H$$

Define

$$\mathcal{O}_{\mathcal{E}} = \varprojlim_{n \to \infty} \frac{\mathbb{Z}_p[[\pi]][\pi^{-1}]}{(p^n)} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Z}_p, \lim_{i \to -\infty} |a_i|_p = 0 \right\}.$$

which is a cohen ring with residue field $\mathbb{F}_p((\bar{\pi}))$. Let $\mathcal{E} = \mathcal{O}_{\mathcal{E}}[1/p]$.

$$\varphi(f(\pi))=f((1+\pi)^p-1), \qquad g(f(\pi))=f((1+\pi)^{\chi(g)}-1), \quad g\in G_{\mathbb{Q}_p}.$$

where χ is the *p*-adic cyclotomic character.

For any p-adic representation V we define

$$D(V) = (V \otimes_{\mathbb{Q}_p} \widehat{\mathcal{E}^{ur}})^H$$

which is a (φ, Γ) -module over \mathcal{E} . For a (φ, Γ) -module we mean a φ -module equipped with a continuous Γ -action which commutes with φ . The p-adic completion of the direct limit

$$\mathcal{O}_{\mathcal{E}} \stackrel{arphi}{ o} \mathcal{O}_{\mathcal{E}} \stackrel{arphi}{ o} \mathcal{O}_{\mathcal{E}} o \cdots$$

is isomorphic to $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$. In this way, we identify $\mathcal{O}_{\mathcal{E}}$ as a subring of $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$.

$$\mathcal{R}^{\mathrm{int},r} = \mathcal{O}_{\mathit{calE}} \cap \widetilde{\mathcal{R}}^{\mathrm{int},r}_{\mathbb{F}_{p}(\widehat{(\bar{\pi})})^{\mathrm{perf}}} \quad \mathcal{R}^{\mathrm{bd},r} = \mathcal{E} \cap \widetilde{\mathcal{R}}^{\mathrm{bd},r}_{\mathbb{F}_{p}(\widehat{(\bar{\pi})})^{\mathrm{perf}}}.$$

$$\varphi(f(\pi)) = f((1+\pi)^p - 1), \qquad g(f(\pi)) = f((1+\pi)^{\chi(g)} - 1), \quad g \in G_{\mathbb{Q}_p}.$$

where χ is the *p*-adic cyclotomic character.

For any p-adic representation V we define

$$D(V) = (V \otimes_{\mathbb{Q}_p} \widehat{\mathcal{E}^{\mathrm{ur}}})^H$$

which is a (φ, Γ) -module over \mathcal{E} . For a (φ, Γ) -module we mean a φ -module equipped with a continuous Γ -action which commutes with φ .

The p-adic completion of the direct limit

$$\mathcal{O}_{\mathcal{E}} \stackrel{arphi}{ o} \mathcal{O}_{\mathcal{E}} \stackrel{arphi}{ o} \mathcal{O}_{\mathcal{E}} o \cdots$$

is isomorphic to $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$. In this way, we identify $\mathcal{O}_{\mathcal{E}}$ as a subring of $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$.

$$\mathcal{R}^{\mathrm{int},r} = \mathcal{O}_{\mathit{calE}} \cap \widetilde{\mathcal{R}}^{\mathrm{int},r}_{\mathbb{F}_{p}(\widehat{(\bar{\pi})})^{\mathrm{perf}}} \quad \mathcal{R}^{\mathrm{bd},r} = \mathcal{E} \cap \widetilde{\mathcal{R}}^{\mathrm{bd},r}_{\mathbb{F}_{p}(\widehat{(\bar{\pi})})^{\mathrm{perf}}}$$

$$\varphi(f(\pi)) = f((1+\pi)^p - 1), \qquad g(f(\pi)) = f((1+\pi)^{\chi(g)} - 1), \quad g \in G_{\mathbb{Q}_p}.$$

where χ is the *p*-adic cyclotomic character.

For any p-adic representation V we define

$$D(V) = (V \otimes_{\mathbb{Q}_p} \widehat{\mathcal{E}^{\mathrm{ur}}})^H$$

which is a (φ, Γ) -module over \mathcal{E} . For a (φ, Γ) -module we mean a φ -module equipped with a continuous Γ -action which commutes with φ . The p-adic completion of the direct limit

$$\mathcal{O}_{\mathcal{E}} \xrightarrow{\varphi} \mathcal{O}_{\mathcal{E}} \xrightarrow{\varphi} \mathcal{O}_{\mathcal{E}} \xrightarrow{} \cdots$$

is isomorphic to $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$. In this way, we identify $\mathcal{O}_{\mathcal{E}}$ as a subring of $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$.

$$\mathcal{R}^{\mathsf{int},r} = \mathcal{O}_{\mathit{calE}} \cap \widetilde{\mathcal{R}}^{\mathsf{int},r}_{\mathbb{F}_{\rho}(\widehat{(\bar{\pi})})^{\mathsf{perf}}} \quad \mathcal{R}^{\mathsf{bd},r} = \mathcal{E} \cap \widetilde{\mathcal{R}}^{\mathsf{bd},r}_{\mathbb{F}_{\rho}(\widehat{(\bar{\pi})})^{\mathsf{perf}}}$$

$$\varphi(f(\pi)) = f((1+\pi)^p - 1), \qquad g(f(\pi)) = f((1+\pi)^{\chi(g)} - 1), \quad g \in G_{\mathbb{Q}_p}.$$

where χ is the *p*-adic cyclotomic character.

For any p-adic representation V we define

$$D(V) = (V \otimes_{\mathbb{Q}_p} \widehat{\mathcal{E}^{\mathrm{ur}}})^H$$

which is a (φ, Γ) -module over \mathcal{E} . For a (φ, Γ) -module we mean a φ -module equipped with a continuous Γ -action which commutes with φ .

The p-adic completion of the direct limit

$$\mathcal{O}_{\mathcal{E}} \stackrel{\varphi}{\to} \mathcal{O}_{\mathcal{E}} \stackrel{\varphi}{\to} \mathcal{O}_{\mathcal{E}} \to \cdots$$

is isomorphic to $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$. In this way, we identify $\mathcal{O}_{\mathcal{E}}$ as a subring of $W(\mathbb{F}_p((\bar{\pi}))^{\mathrm{perf}})$.

$$\mathcal{R}^{\mathsf{int},r} = \mathcal{O}_{\mathsf{calE}} \cap \widetilde{\mathcal{R}}^{\mathsf{int},r}_{\mathbb{F}_{\rho}(\widehat{(\bar{\pi})})^{\mathrm{perf}}} \quad \mathcal{R}^{\mathsf{bd},r} = \mathcal{E} \cap \widetilde{\mathcal{R}}^{\mathsf{bd},r}_{\mathbb{F}_{\rho}(\widehat{(\bar{\pi})})^{\mathrm{perf}}}.$$

More precisely,

$$\mathcal{R}^{\mathrm{bd},r} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \sup_i \{|a_i|_p\} < +\infty, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0,r] \right\}$$

Let \mathcal{R}^r be the Fréchet completion of $\mathcal{R}^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$. It follows that

$$\mathcal{R}^r = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0, r] \right\}.$$

Let $\mathcal{R}^{\mathrm{int}} = \cup_{r>0} \mathcal{R}^{\mathrm{int},r}$, $\mathcal{R}^{\mathrm{bd}} = \cup_{r>0} \mathcal{R}^{\mathrm{bd},r}$, $\mathcal{R} = \cup_{r>0} \mathcal{R}^r$. A (φ, Γ) -module over \mathcal{E} is called étale if it is the base change of a (φ, Γ) -module over $\mathcal{R}^{\mathrm{bd}}$ or \mathcal{R} is called étale if it is the base change of a (φ, Γ) -module over $\mathcal{R}^{\mathrm{bd}}$.

More precisely,

$$\mathcal{R}^{\mathrm{bd},r} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \sup_i \{|a_i|_p\} < +\infty, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0,r] \right\}$$

Let \mathcal{R}^r be the Fréchet completion of $\mathcal{R}^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$. It follows that

$$\mathcal{R}^r = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0, r] \right\}.$$

Let $\mathcal{R}^{\mathrm{int}} = \cup_{r>0} \mathcal{R}^{\mathrm{int},r}$, $\mathcal{R}^{\mathrm{bd}} = \cup_{r>0} \mathcal{R}^{\mathrm{bd},r}$, $\mathcal{R} = \cup_{r>0} \mathcal{R}^r$. A (φ, Γ) -module over \mathcal{E} is called étale if it is the base change of a (φ, Γ) -module over $\mathcal{R}^{\mathrm{bd}}$ or \mathcal{R} is called étale if it is the base change of a (φ, Γ) -module over $\mathcal{R}^{\mathrm{bd}}$.

More precisely,

$$\mathcal{R}^{\mathrm{bd},r} = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \sup_i \{|a_i|_p\} < +\infty, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0,r] \right\}$$

Let \mathcal{R}^r be the Fréchet completion of $\mathcal{R}^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s\in(0,r]$. It follows that

$$\mathcal{R}^r = \left\{ \sum_{i \in \mathbb{Z}} a_i \pi^i : a_i \in \mathbb{Q}_p, \lim_{i \to \pm \infty} p^{-ir} |a_i|_p = 0, s \in (0, r] \right\}.$$

Let $\mathcal{R}^{\text{int}} = \cup_{r>0} \mathcal{R}^{\text{int},r}$, $\mathcal{R}^{\text{bd}} = \cup_{r>0} \mathcal{R}^{\text{bd},r}$, $\mathcal{R} = \cup_{r>0} \mathcal{R}^r$. A (φ, Γ) -module over \mathcal{E} is called étale if it is the base change of a (φ, Γ) -module over $\mathcal{O}_{\mathcal{E}}$. A (φ, Γ) -module over \mathcal{R}^{bd} or \mathcal{R} is called étale if it is the base change of a (φ, Γ) -module over \mathcal{R}^{int} .

Theorem (Fontaine, Cherbonnier-Colmez, Berger, Kedlaya)

The following categories are equivalent.

- **1** The category of continuous representations of $G_{\mathbb{Q}_p}$ on finite dimensional \mathbb{Q}_p -vector spaces.
- $oldsymbol{arphi}$ The category of étale $(arphi, \Gamma)$ -modules over ${\mathcal E}.$
- f 3 The category of étale $(arphi, \Gamma)$ -modules over $\mathcal{R}^{\mathsf{bd}}$.
- **1** The category of étale (φ, Γ) -modules over \mathcal{R} .

More precisely, the functors from (3) to (2) and from (3) to (4) are base extensions.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?)

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{ p^{-i} |x_i|^r \}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\rm int} = \cup_{r>0} \widetilde{\mathcal{R}}_R^{{\rm int},r}$.

Let $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_R^{\mathrm{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r}$

Let $\widetilde{\mathcal{R}}_{R}^{\mathrm{bd}} = \cup_{r>0} \widetilde{\mathcal{R}}_{R}^{\mathrm{bd},r}$, and let $\widetilde{\mathcal{R}}_{R} = \cup_{r>0} \widetilde{\mathcal{R}}_{R}^{r}$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?)

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{ p^{-i} |x_i|^r \}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$.

Let $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_R^{\mathrm{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_{R}^{\mathrm{bd}} = \bigcup_{r>0} \widetilde{\widetilde{\mathcal{R}}}_{R}^{\mathrm{bd},r}$, and let $\widetilde{\widetilde{\mathcal{R}}}_{R}^{r} = \bigcup_{r>0} \widetilde{\widetilde{\mathcal{R}}}_{R}^{r}$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?)

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \cup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$. Let $\widetilde{\mathcal{R}}_R^{\text{bd},r} = \widetilde{\mathcal{R}}_R^{\text{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\text{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

- Step 1: non-abelian Artin-Schreier theory for general bases.
- Step 2: "norm rings" for affinoid spaces.
- Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?)

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \cup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$. Let $\widetilde{\mathcal{R}}_R^{\text{bd},r} = \widetilde{\mathcal{R}}_R^{\text{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\text{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?).

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$. Let $\widetilde{\mathcal{R}}_R^{\text{bd},r} = \widetilde{\mathcal{R}}_R^{\text{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\text{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Ruochuan Liu (Institute for Advanced Study)

Relative p-a

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?).

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r>0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f=\sum_{i=0}^\infty p^i[x_i]\in W(R)$ for which $\lim_{i\to\infty} p^{-i}|x_i|^r=0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$. Let $\widetilde{\mathcal{R}}_R^{\text{bd},r} = \widetilde{\mathcal{R}}_R^{\text{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\text{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?).

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r>0, let $\widetilde{\mathcal{R}}_R^{\mathrm{int},r}$ be the ring of $f=\sum_{i=0}^\infty p^i[x_i]\in W(R)$ for which $\lim_{i\to\infty} p^{-i}|x_i|^r=0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\mathrm{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let $\widetilde{\mathcal{E}}_R = W(R)[1/p]$ and $\widetilde{\mathcal{R}}_R^{\text{int}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^{\text{int},r}$. Let $\widetilde{\mathcal{R}}_R^{\text{bd},r} = \widetilde{\mathcal{R}}_R^{\text{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\text{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?).

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let
$$\widetilde{\mathcal{E}}_R = W(R)[1/p]$$
 and $\widetilde{\mathcal{R}}_R^{\mathsf{int}} = \cup_{r>0} \widetilde{\mathcal{R}}_R^{\mathsf{int},r}$.

Let $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_R^{\mathrm{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_R^r$ be the Fréchet completion of $\widetilde{\mathcal{R}}_R^{\mathrm{bd},r}$ under the norms $|\cdot|_s$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_R^{\mathrm{bd}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^{\mathrm{bd},r}$, and let $\widetilde{\mathcal{R}}_R = \bigcup_{r>0} \widetilde{\mathcal{R}}_R^r$.

Step 1: non-abelian Artin-Schreier theory for general bases.

Step 2: "norm rings" for affinoid spaces.

Step 3: Fontaine's rings for affinoid spaces.

Step 4: globalize(?).

From now on, we fix a perfect Banach algebra R over an analytic field of characteristic p. We denote its norm by $|\cdot|$.

For r > 0, let $\widetilde{\mathcal{R}}_R^{\text{int},r}$ be the ring of $f = \sum_{i=0}^{\infty} p^i[x_i] \in W(R)$ for which $\lim_{i \to \infty} p^{-i}|x_i|^r = 0$, and define $|\cdot|_r$ on $\widetilde{\mathcal{R}}_R^{\text{int},r}$ by setting

$$|f|_r = \max_{i \in \mathbb{N}} \{p^{-i}|x_i|^r\}.$$

Let
$$\widetilde{\mathcal{E}}_R = W(R)[1/p]$$
 and $\widetilde{\mathcal{R}}_R^{\mathsf{int}} = \cup_{r>0} \widetilde{\mathcal{R}}_R^{\mathsf{int},r}$.

Let $\widetilde{\mathcal{R}}_{R}^{\mathrm{bd},r} = \widetilde{\mathcal{R}}_{R}^{\mathrm{int},r}[1/p]$, and let $\widetilde{\mathcal{R}}_{R}^{r}$ be the Fréchet completion of $\widetilde{\mathcal{R}}_{R}^{\mathrm{bd},r}$ under the norms $|\cdot|_{s}$ for $s \in (0,r]$.

Let $\widetilde{\mathcal{R}}_{P}^{\text{bd}} = \bigcup_{r>0} \widetilde{\mathcal{R}}_{P}^{\text{bd},r}$, and let $\widetilde{\mathcal{R}}_{R} = \bigcup_{r>0} \widetilde{\mathcal{R}}_{P}^{r}$.

Ruochuan Liu (Institute for Advanced Study)

Definition

A φ -module over W(R) (resp. $\widetilde{\mathcal{E}}_R$, $\widetilde{\mathcal{R}}_R^{\rm int}$, $\widetilde{\mathcal{R}}_R^{\rm bd}$) is a finite locally free module M equipped with an isomorphism $\varphi^*M\cong M$. A φ -module over $\widetilde{\mathcal{R}}_R$ is a vector bundle M over $\widetilde{\mathcal{R}}_R^r$ for some r>0, together with an isomorphism $\varphi^*M\cong M$ of vector bundles over $\widetilde{\mathcal{R}}_R^s$ for some $s\in (0,r/p]$.

Theorem (Kedlaya-L.)

The following categories are equivalent.

- (1) The category of étale \mathbb{Q}_p -local systems over $\operatorname{Spec}(R)$
- (2) The category of étale φ -modules over $\widehat{\mathcal{E}}_R$.
- (3) The category of étale φ -modules over $\widetilde{\mathcal{R}}_R^{\mathrm{bd}}$.
- (4) The category of étale φ -modules over $\widetilde{\mathcal{R}}_R$.

More precisely, the functors from (3) to (4) and from (3) to (2) are base extensions.

Definition

A φ -module over W(R) (resp. $\widetilde{\mathcal{E}}_R$, $\widetilde{\mathcal{R}}_R^{\rm int}$, $\widetilde{\mathcal{R}}_R^{\rm bd}$) is a finite locally free module M equipped with an isomorphism $\varphi^*M\cong M$. A φ -module over $\widetilde{\mathcal{R}}_R$ is a vector bundle M over $\widetilde{\mathcal{R}}_R^r$ for some r>0, together with an isomorphism $\varphi^*M\cong M$ of vector bundles over $\widetilde{\mathcal{R}}_R^s$ for some $s\in (0,r/p]$.

Theorem (Kedlaya-L.)

The following categories are equivalent.

- (1) The category of étale \mathbb{Q}_p -local systems over $\operatorname{Spec}(R)$.
- (2) The category of étale φ -modules over $\widetilde{\mathcal{E}}_R$.
- (3) The category of étale φ -modules over $\widetilde{\mathcal{R}}_{R}^{\mathrm{bd}}$.
- (4) The category of étale φ -modules over $\widetilde{\mathcal{R}}_R$.

More precisely, the functors from (3) to (4) and from (3) to (2) are base extensions.

Remark

For a φ -module M over $\widetilde{\mathcal{R}}_R$, the point $\alpha \in \mathcal{M}(R)$ so that M_α is étale forms an open subset of $\mathcal{M}(R)$. Furthermore, M is étale if and only if M_α is étale for any $\alpha \in \mathcal{M}(R)$

Remark

For a φ -module M over $\widetilde{\mathcal{R}}_R$, the point $\alpha \in \mathcal{M}(R)$ so that M_α is étale forms an open subset of $\mathcal{M}(R)$. Furthermore, M is étale if and only if M_α is étale for any $\alpha \in \mathcal{M}(R)$.

Let S be perfect ring of characteristic p equipped with the trivial norm, and we equip W(S) with the p-adic norm. We define continuous maps $\lambda: \mathcal{M}(S) \to \mathcal{M}(W(S))$ and $\mu: \mathcal{M}(W(S)) \to \mathcal{M}(S)$ as follows. For $\alpha \in \mathcal{M}(S)$, we define $\lambda(\alpha)$ by setting

$$\lambda(\alpha)\left(\sum_{i=0}^{\infty}p^{i}[\overline{x}_{i}]\right)=\sup_{i}\{p^{-i}\alpha(\overline{x}_{i})\}.$$

For $\beta \in \mathcal{M}(W(S))$, we define $\mu(\beta)$ by setting

$$\mu(\beta)(\overline{x}) = \beta([\overline{x}]).$$

It is easy to check that $\mu \circ \lambda = \operatorname{id}$ and $\lambda \circ \mu(\beta) \geq \beta$. In fact, one can construct a homotopy between $\lambda \circ \mu$ and the identity map on $\mathcal{M}(W(R))$, and show that any subset of $\mathcal{M}(R)$ has the same homotopy type as its inverse image of μ . Intuitively, one can view that $\mu : \mathcal{M}(W(S)) \to \mathcal{M}(S)$ realize $\mathcal{M}(W(S))$ as a disk bundle over $\mathcal{M}(S)$ and λ is a section of it.

Let S be perfect ring of characteristic p equipped with the trivial norm, and we equip W(S) with the p-adic norm. We define continuous maps $\lambda: \mathcal{M}(S) \to \mathcal{M}(W(S))$ and $\mu: \mathcal{M}(W(S)) \to \mathcal{M}(S)$ as follows. For $\alpha \in \mathcal{M}(S)$, we define $\lambda(\alpha)$ by setting

$$\lambda(\alpha)\left(\sum_{i=0}^{\infty}p^{i}[\overline{x}_{i}]\right)=\sup_{i}\{p^{-i}\alpha(\overline{x}_{i})\}.$$

For $\beta \in \mathcal{M}(W(S))$, we define $\mu(\beta)$ by setting

$$\mu(\beta)(\overline{x}) = \beta([\overline{x}]).$$

It is easy to check that $\mu \circ \lambda = \operatorname{id}$ and $\lambda \circ \mu(\beta) \geq \beta$. In fact, one can construct a homotopy between $\lambda \circ \mu$ and the identity map on $\mathcal{M}(W(R))$, and show that any subset of $\mathcal{M}(R)$ has the same homotopy type as its inverse image of μ . Intuitively, one can view that $\mu : \mathcal{M}(W(S)) \to \mathcal{M}(S)$ realize $\mathcal{M}(W(S))$ as a disk bundle over $\mathcal{M}(S)$ and λ is a section of it.

An element $z = \sum_{i=0}^{\infty} p^i[\overline{z}_i] \in W(\mathfrak{o}_R)$ is called *primitive of degree* 1 if $\overline{z}_0 \in R^{\times}$, $\alpha(\overline{z}_0) = p^{-1}$, $\alpha(\overline{z}_0^{-1}) = p$, and $\overline{z}_1 \in \mathfrak{o}_R^{\times}$.

Theorem (Kedlaya)

Let $\mathfrak{o}_R = \{a \in R | |a| \leq 1\}$. Equip $W(\mathfrak{o}_R)$ with the norm $\lambda(|\cdot|)$. Suppose that $z \in W(\mathfrak{o}_R)$ is primitive of degree 1.

- (a) For each $\gamma \in \mathcal{M}(\mathfrak{o}_R)$, the quotient seminorm $\sigma(\gamma)$ on $W(\mathfrak{o}_R)/(z)$ induced by $\lambda(\gamma)$ is multiplicative and satisfies $\mu(\sigma(\gamma)) = \gamma$.
- (b) Then the map $\sigma: \mathcal{M}(\mathfrak{o}_R) \to \mathcal{M}(W(\mathfrak{o}_R))$ indicated by (a) is a continuous section of μ , which induces a homeomorphism of $\mathcal{M}(\mathfrak{o}_R)$ with $\mathcal{M}(W(\mathfrak{o}_R)/(z))$. Under this homeomorphism, Laurent (resp. rational) subspaces of $\mathcal{M}(\mathfrak{o}_R)$ correspond to Laurent (resp. rational) subspaces of $\mathcal{M}(W(\mathfrak{o}_R)/(z))$.

An element $z = \sum_{i=0}^{\infty} p^i[\overline{z}_i] \in W(\mathfrak{o}_R)$ is called *primitive of degree* 1 if $\overline{z}_0 \in R^{\times}$, $\alpha(\overline{z}_0) = p^{-1}$, $\alpha(\overline{z}_0^{-1}) = p$, and $\overline{z}_1 \in \mathfrak{o}_R^{\times}$.

Theorem (Kedlaya)

Let $\mathfrak{o}_R = \{a \in R | |a| \leq 1\}$. Equip $W(\mathfrak{o}_R)$ with the norm $\lambda(|\cdot|)$. Suppose that $z \in W(\mathfrak{o}_R)$ is primitive of degree 1.

- (a) For each $\gamma \in \mathcal{M}(\mathfrak{o}_R)$, the quotient seminorm $\sigma(\gamma)$ on $W(\mathfrak{o}_R)/(z)$ induced by $\lambda(\gamma)$ is multiplicative and satisfies $\mu(\sigma(\gamma)) = \gamma$.
- (b) Then the map $\sigma: \mathcal{M}(\mathfrak{o}_R) \to \mathcal{M}(W(\mathfrak{o}_R))$ indicated by (a) is a continuous section of μ , which induces a homeomorphism of $\mathcal{M}(\mathfrak{o}_R)$ with $\mathcal{M}(W(\mathfrak{o}_R)/(z))$. Under this homeomorphism, Laurent (resp. rational) subspaces of $\mathcal{M}(\mathfrak{o}_R)$ correspond to Laurent (resp. rational) subspaces of $\mathcal{M}(W(\mathfrak{o}_R)/(z))$.

An element $z = \sum_{i=0}^{\infty} p^i[\overline{z}_i] \in W(\mathfrak{o}_R)$ is called *primitive of degree* 1 if $\overline{z}_0 \in R^{\times}$, $\alpha(\overline{z}_0) = p^{-1}$, $\alpha(\overline{z}_0^{-1}) = p$, and $\overline{z}_1 \in \mathfrak{o}_R^{\times}$.

Theorem (Kedlaya)

Let $\mathfrak{o}_R = \{a \in R | |a| \leq 1\}$. Equip $W(\mathfrak{o}_R)$ with the norm $\lambda(|\cdot|)$. Suppose that $z \in W(\mathfrak{o}_R)$ is primitive of degree 1.

- (a) For each $\gamma \in \mathcal{M}(\mathfrak{o}_R)$, the quotient seminorm $\sigma(\gamma)$ on $W(\mathfrak{o}_R)/(z)$ induced by $\lambda(\gamma)$ is multiplicative and satisfies $\mu(\sigma(\gamma)) = \gamma$.
- (b) Then the map $\sigma: \mathcal{M}(\mathfrak{o}_R) \to \mathcal{M}(W(\mathfrak{o}_R))$ indicated by (a) is a continuous section of μ , which induces a homeomorphism of $\mathcal{M}(\mathfrak{o}_R)$ with $\mathcal{M}(W(\mathfrak{o}_R)/(z))$. Under this homeomorphism, Laurent (resp. rational) subspaces of $\mathcal{M}(\mathfrak{o}_R)$ correspond to Laurent (resp. rational) subspaces of $\mathcal{M}(W(\mathfrak{o}_R)/(z))$.

We fix a "p-adic $\exp(2\pi i)$ " $\epsilon=(1,\epsilon_1,\epsilon_2,\cdots)$. The minimal polynomial of ϵ_n is

$$F_n = \frac{(1+\pi)^{p^n}-1}{(1+\pi)^{p^{n-1}}-1}.$$

Note that $\mathcal{R}^{\text{int},1}/(F_n) \cong \mathbb{Q}_p(\epsilon_n)$ and $\varphi(F_n) = F_{n+1}$. The φ -action thus induces the following diagram

$$\mathcal{R}^{\text{int},1}/(F_1) \xrightarrow{\varphi} \mathcal{R}^{\text{int},1}/(F_2) \xrightarrow{\varphi} \cdots \\
\downarrow \cong \qquad \qquad \qquad \downarrow \cong \\
\mathbb{Q}_p(\epsilon_1) \xrightarrow{} \mathbb{Q}_p(\epsilon_2) \xrightarrow{} \cdots$$

where the maps of the second row are inclusions.

Taking p-adic completion of the direct limit of this diagram we get

$$\widetilde{\mathcal{R}}^{\mathrm{int},1}_{\mathbb{F}_p(\widehat{(\pi)})^{\mathrm{perf}}}/(z)\cong\widehat{\mathbb{Q}_p(\mu_{p^\infty})}$$

where

$$z = \varphi^{-1}(F_1) = \frac{\pi}{\pi^{1/p}} = \sum_{i=1}^{p-1} [1 + \overline{\pi}]^{i/p}$$

We fix a "p-adic $\exp(2\pi i)$ " $\epsilon = (1, \epsilon_1, \epsilon_2, \cdots)$. The minimal polynomial of ϵ_n is

$$F_n = \frac{(1+\pi)^{p^n}-1}{(1+\pi)^{p^{n-1}}-1}.$$

Note that $\mathcal{R}^{\text{int},1}/(F_n)\cong \mathbb{Q}_p(\epsilon_n)$ and $\varphi(F_n)=F_{n+1}$. The φ -action thus induces the following diagram

$$\mathcal{R}^{\text{int},1}/(F_1) \xrightarrow{\varphi} \mathcal{R}^{\text{int},1}/(F_2) \xrightarrow{\varphi} \cdots \\
\downarrow \cong \qquad \qquad \downarrow \cong \\
\mathbb{Q}_p(\epsilon_1) \longrightarrow \mathbb{Q}_p(\epsilon_2) \longrightarrow \cdots$$

where the maps of the second row are inclusions.

Taking p-adic completion of the direct limit of this diagram we get

$$\widetilde{\mathcal{R}}_{\mathbb{F}_p(\widehat{(\pi)})^{\mathrm{perf}}}^{\mathsf{int},1}/(z)\cong\widehat{\mathbb{Q}_p(\mu_{p^\infty})}$$

where

$$z = \varphi^{-1}(F_1) = \frac{\pi}{\pi^{1/p}} = \sum_{i=1}^{p-1} [1 + \overline{\pi}]^{i/p}$$

We fix a "p-adic $\exp(2\pi i)$ " $\epsilon = (1, \epsilon_1, \epsilon_2, \cdots)$. The minimal polynomial of ϵ_n is

$$F_n = \frac{(1+\pi)^{p^n}-1}{(1+\pi)^{p^{n-1}}-1}.$$

Note that $\mathcal{R}^{\text{int},1}/(F_n) \cong \mathbb{Q}_p(\epsilon_n)$ and $\varphi(F_n) = F_{n+1}$. The φ -action thus induces the following diagram

$$\mathcal{R}^{\text{int},1}/(F_1) \xrightarrow{\varphi} \mathcal{R}^{\text{int},1}/(F_2) \xrightarrow{\varphi} \cdots \\
\downarrow \cong \qquad \qquad \downarrow \cong \\
\mathbb{Q}_p(\epsilon_1) \longrightarrow \mathbb{Q}_p(\epsilon_2) \longrightarrow \cdots$$

where the maps of the second row are inclusions.

Taking p-adic completion of the direct limit of this diagram we get

$$\widetilde{\mathcal{R}}_{\mathbb{F}_p(\widehat{(\pi)})^{\mathrm{perf}}}^{\mathrm{int},1}/(z)\cong\widehat{\mathbb{Q}_p(\mu_{p^\infty})}$$

where

$$z = \varphi^{-1}(F_1) = \frac{\pi}{\pi^{1/p}} = \sum_{p=1}^{p-1} [1 + \overline{\pi}]^{i/p}$$

which is primitive of degree 1.

For any S, let $\mathbf{F\acute{E}t}(S)$ denote the category of finite étale algebras over S.

Proposition (Kedlaya-L.)

Suppose that L is a perfect analytic field of characteristic p, and that $z \in W(\mathfrak{o}_L)$ is primitive of degree 1. Applying **FÉt** to any arrow in the diagram

$$L \leftarrow \tilde{\mathcal{R}}_L^{\text{int},1} \rightarrow \tilde{\mathcal{R}}_L^{\text{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

For $L = \mathbb{F}_p((\pi))^{perf}$, this proposition recovers Fontaine-Wintenberger's theorem.

Theorem (Kedlaya-L.)

For $z \in W(\mathfrak{o}_R)$ primitive of degree 1, applying **FÉt** to any arrow in the diagram

$$R \leftarrow \tilde{\mathcal{R}}_R^{\text{int},1} \rightarrow \tilde{\mathcal{R}}_R^{\text{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

which is primitive of degree 1.

For any S, let $\mathbf{F\acute{E}t}(S)$ denote the category of finite étale algebras over S.

Proposition (Kedlaya-L.)

Suppose that L is a perfect analytic field of characteristic p, and that $z \in W(\mathfrak{o}_L)$ is primitive of degree 1. Applying **FÉt** to any arrow in the diagram

$$L \leftarrow \mathcal{ ilde{R}}_L^{\mathsf{int},1}
ightarrow \mathcal{ ilde{R}}_L^{\mathsf{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

For $L = \mathbb{F}_p((\pi))^{\mathrm{perf}}$, this proposition recovers Fontaine-Wintenberger's theorem.

Theorem (Kedlaya-L.

For $z \in W(\mathfrak{o}_R)$ primitive of degree 1, applying **FÉt** to any arrow in the diagram

$$R \leftarrow \tilde{\mathcal{R}}_R^{\mathsf{int},1} \to \tilde{\mathcal{R}}_R^{\mathsf{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

which is primitive of degree 1.

For any S, let $\mathbf{F\acute{E}t}(S)$ denote the category of finite étale algebras over S.

Proposition (Kedlaya-L.)

Suppose that L is a perfect analytic field of characteristic p, and that $z \in W(\mathfrak{o}_L)$ is primitive of degree 1. Applying **FÉt** to any arrow in the diagram

$$L \leftarrow \tilde{\mathcal{R}}_L^{\mathsf{int},1}
ightarrow \tilde{\mathcal{R}}_L^{\mathsf{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

For $L = \mathbb{F}_p((\pi))^{\mathrm{perf}}$, this proposition recovers Fontaine-Wintenberger's theorem.

Theorem (Kedlaya-L.)

For $z \in W(\mathfrak{o}_R)$ primitive of degree 1, applying **FÉt** to any arrow in the diagram

$$R \leftarrow \tilde{\mathcal{R}}_R^{\mathsf{int},1}
ightarrow ilde{\mathcal{R}}_R^{\mathsf{int},1}/(z)$$

produces a rank-preserving equivalence of tensor categories.

For J a finite index set, let $\mathbb{Q}_p\langle J\rangle$ denote the completion for the Gauss norm of the polynomial ring $\mathbb{Q}_p[J]$. That is, for each labeling j_1,\ldots,j_m of the elements of J, $\mathbb{Q}_p\langle J\rangle$ is isomorphic to $\mathbb{Q}_p\langle T_1,\ldots,T_m\rangle$, but we do not distinguish a choice of labeling. By a framed \mathbb{Q}_p -affinoid algebra, we will mean a pair (A,ψ) in which $A=A(\psi)$ is a reduced \mathbb{Q}_p -affinoid algebra and $\psi:\mathbb{Q}_p\langle J\rangle\to A$ is a bound homomorphism for some finite set $J=J(\psi)$ which identifies $\mathcal{M}(A)$ with a closed immersed subspace of a rational subspace of $\mathcal{M}(\mathbb{Q}_p\langle J\rangle)$. In this setting, we refer to $\mathcal{M}(A)$ as a framed \mathbb{Q}_p -affinoid space.

A morphism $(A_1, \psi_1) \to (A_2, \psi_2)$ of framed \mathbb{Q}_p -affinoid algebras is a commutative diagram

$$\mathbb{Q}_{\rho}\langle J(\psi_{1})\rangle \xrightarrow{\psi_{1}} A_{1} \qquad (14.1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q}_{\rho}\langle J(\psi_{2})\rangle \xrightarrow{\psi_{2}} A_{2}$$

in which the vertical arrows are bound homomorphisms, and the left vertical arrow is induced by a function $J(\tau):J(\psi_1)\to J(\psi_2)$. A basic morphism $(A_1,\psi_1)\to (A_2,\psi_2)$ is a morphism in which $J(\tau)$ is injective. A basic morphism whose underlying homomorphism $A_1\to A_2$ is an isomorphism is called a basic refinement; in this situation, we say that (A_2,ψ_2) is a basic refinement of (A_1,ψ_1) .

Let (A_1,ψ_1) , (A_2,ψ_2) be framed \mathbb{Q}_p -affinoid algebras. Let $\tau:A_1\to A_2$ be a bounded homomorphism of \mathbb{Q}_p -affinoid algebras. We define the *framed graph* of τ to be the framed \mathbb{Q}_p -affinoid algebra (A_3,ψ_3) in which $A_3=A_2,\ J(\psi_3)=J(\psi_1)\cup J(\psi_2)$, and $\psi_3:\mathbb{Q}_p\langle J(\psi_3)\rangle\to A_3$ is given by identifying $\mathbb{Q}_p\langle J(\psi_1)\cup J(\psi_2)\rangle$ with $\mathbb{Q}_p\langle J(\psi_1)\rangle\widehat{\otimes}_{\mathbb{Q}_p}\mathbb{Q}_p\langle J(\psi_2)\rangle$ and taking the product of the morphisms ψ_1 and $\psi_2\circ\tau$. By including the two factors into the completed tensor product, we obtain morphisms $(A_1,\psi_1)\to (A_3,\psi_3)$ and $(A_2,\psi_2)\to (A_3,\psi_3)$ whose underlying morphisms are the map $\tau:A_1\to A_2\cong A_3$ and the identification $A_2\cong A_3$.

Remark

Using framed graphs, we see that if we start with the category of framed \mathbb{Q}_p -affinoid algebras with basic morphisms, then localize by formally inverting the basic refinements, we recover the category of \mathbb{Q}_p -affinoid algebras.

Let (A_1,ψ_1) , (A_2,ψ_2) be framed \mathbb{Q}_p -affinoid algebras. Let $\tau:A_1\to A_2$ be a bounded homomorphism of \mathbb{Q}_p -affinoid algebras. We define the *framed graph* of τ to be the framed \mathbb{Q}_p -affinoid algebra (A_3,ψ_3) in which $A_3=A_2,\ J(\psi_3)=J(\psi_1)\cup J(\psi_2)$, and $\psi_3:\mathbb{Q}_p\langle J(\psi_3)\rangle\to A_3$ is given by identifying $\mathbb{Q}_p\langle J(\psi_1)\cup J(\psi_2)\rangle$ with $\mathbb{Q}_p\langle J(\psi_1)\rangle\widehat{\otimes}_{\mathbb{Q}_p}\mathbb{Q}_p\langle J(\psi_2)\rangle$ and taking the product of the morphisms ψ_1 and $\psi_2\circ\tau$. By including the two factors into the completed tensor product, we obtain morphisms $(A_1,\psi_1)\to (A_3,\psi_3)$ and $(A_2,\psi_2)\to (A_3,\psi_3)$ whose underlying morphisms are the map $\tau:A_1\to A_2\cong A_3$ and the identification $A_2\cong A_3$.

Remark

Using framed graphs, we see that if we start with the category of framed \mathbb{Q}_p -affinoid algebras with basic morphisms, then localize by formally inverting the basic refinements, we recover the category of \mathbb{Q}_p -affinoid algebras.

Equip $\mathbb{Z}_p\langle J\rangle[\![\pi]\!]$ with the Gauss norm. Define the Frobenius lift φ on $\mathbb{Z}_p\langle J\rangle[\![\pi]\!]$ by the formula

$$\sum_{i_0,...,i_m} c_{i_0,...,i_m} \pi^{i_0} \, T_1^{i_1} \cdots T_m^{i_m} \mapsto \sum_{i_0,...,i_m} c_{i_0,...,i_m} ((1+\pi)^p-1)^{i_0} \, T_1^{pi_1} \cdots T_m^{pi_m}.$$

Define an action of the group $\Gamma_J = \mathbb{Z}_p^\times \ltimes \mathbb{Z}_p^J$ commuting with φ , by declaring that $\gamma \in \mathbb{Z}_p^\times$ acts via the formula

$$\sum_{i_0,...,i_m} c_{i_0,...,i_m} \pi^{i_0} \, T_1^{i_1} \cdots T_m^{i_m} \mapsto \sum_{i_0,...,i_m} c_{i_0,...,i_m} ((1+\pi)^{\gamma}-1)^{i_0} \, T_1^{i_1} \cdots T_m^{i_m},$$

while $(e_1,\ldots,e_m)\in\mathbb{Z}_p^J$ acts via the formula

$$\sum_{i_0,...,i_m} c_{i_0,...,i_m} \pi^{i_0} \, T_1^{i_1} \cdots T_m^{i_m} \mapsto \sum_{i_0,...,i_m} c_{i_0,...,i_m} (1+\pi)^{e_1 i_1 + \cdots + e_m i_m} \pi^{i_0} \, T_1^{i_1} \cdots T_m^{i_m}.$$

Note that

$$\mathbb{Q}_p\langle J\rangle \llbracket \pi \rrbracket/(F_n) \cong \mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

The Frobenius lift φ induces the isometric homomorphism

$$\varphi_n: \mathbb{Q}_p(\epsilon_n)\langle J\rangle \to \mathbb{Q}_p(\epsilon_{n+1})\langle J\rangle$$

which is the identity on scalars, and maps T_i to T_i^p .

Proposition (Kedlaya-L.)

The map

$$\varphi_n^*: \mathcal{M}(\mathbb{Q}_p(\epsilon_{n+1})\langle J \rangle) \mapsto \mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J \rangle)$$

is surjective, with finite fibres permuted transitively by $(\mathbb{Z}_p^{\times} \cap p^n \mathbb{Z}_p) \ltimes p^n \mathbb{Z}_p^J$.

Let (A, ψ) be a framed \mathbb{Q}_p -affinoid algebra with $J(\psi) = J$. Let $A_{\psi,n}$ be the reduced quotient of

$$A\widehat{\otimes}_{\mathbb{Q}_p\langle J\rangle,\varphi_{n-1}\circ\cdots\circ\varphi_0}\mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

Note that

$$\mathbb{Q}_p\langle J\rangle \llbracket \pi \rrbracket/(F_n) \cong \mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

The Frobenius lift φ induces the isometric homomorphism

$$\varphi_n: \mathbb{Q}_p(\epsilon_n)\langle J \rangle \to \mathbb{Q}_p(\epsilon_{n+1})\langle J \rangle$$

which is the identity on scalars, and maps T_i to T_i^p .

Proposition (Kedlaya-L.)

The map

$$\varphi_n^*: \mathcal{M}(\mathbb{Q}_p(\epsilon_{n+1})\langle J \rangle) \mapsto \mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J \rangle)$$

is surjective, with finite fibres permuted transitively by $(\mathbb{Z}_p^{\times} \cap p^n \mathbb{Z}_p) \ltimes p^n \mathbb{Z}_p^J$.

Let (A, ψ) be a framed \mathbb{Q}_p -affinoid algebra with $J(\psi) = J$. Let $A_{\psi,n}$ be the reduced quotient of

$$A\widehat{\otimes}_{\mathbb{Q}_p\langle J\rangle,\varphi_{n-1}\circ\cdots\circ\varphi_0}\mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

Note that

$$\mathbb{Q}_p\langle J\rangle \llbracket \pi \rrbracket/(F_n) \cong \mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

The Frobenius lift φ induces the isometric homomorphism

$$\varphi_n: \mathbb{Q}_p(\epsilon_n)\langle J \rangle \to \mathbb{Q}_p(\epsilon_{n+1})\langle J \rangle$$

which is the identity on scalars, and maps T_i to T_i^p .

Proposition (Kedlaya-L.)

The map

$$\varphi_n^*: \mathcal{M}(\mathbb{Q}_p(\epsilon_{n+1})\langle J \rangle) \mapsto \mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J \rangle)$$

is surjective, with finite fibres permuted transitively by $(\mathbb{Z}_p^{\times} \cap p^n \mathbb{Z}_p) \ltimes p^n \mathbb{Z}_p^J$.

Let (A, ψ) be a framed \mathbb{Q}_p -affinoid algebra with $J(\psi) = J$. Let $A_{\psi,n}$ be the reduced quotient of

$$A\widehat{\otimes}_{\mathbb{Q}_p\langle J\rangle,\varphi_{n-1}\circ\cdots\circ\varphi_0}\mathbb{Q}_p(\epsilon_n)\langle J\rangle.$$

Equip $A_{\psi,n}$ with the spectral seminorm, then we may identify $\mathcal{M}(A_{\psi,n})$ with the inverse image of $\mathcal{M}(A) \subseteq \mathcal{M}(\mathbb{Q}_p\langle J\rangle)$ in $\mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J\rangle)$; it is closed and Γ_J -stable. We have

$$\cdots \longrightarrow \mathcal{M}(A_{\psi,1}) \longrightarrow \mathcal{M}(A_{\psi,0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow^{\varphi_1^*} \mathcal{M}(\mathbb{Q}_p(\epsilon_1)\langle J \rangle) \xrightarrow{\varphi_0^*} \mathcal{M}(\mathbb{Q}_p\langle J \rangle).$$

Let $A_{\psi,\infty}$ be the completion of the direct limit

$$A_{\psi,0} \stackrel{\varphi_0}{\to} A_{\psi,1} \stackrel{\varphi_1}{\to} \cdots,$$

which carries an action of Γ_J with fixed subring $A_{\psi,0} \cong A$. Let $\mathfrak{o}_{\overline{A_\psi}}$ be the inverse limit of

$$\cdots \stackrel{arphi}{ o} \mathfrak{o}_{A_{\psi,\infty}}/(p) \stackrel{arphi}{ o} \mathfrak{o}_{A_{\psi,\infty}}/(p),$$

and let
$$\overline{A_{\psi}} = \mathfrak{o}_{\overline{\Delta}}[\overline{\pi}^{-1}].$$

Equip $A_{\psi,n}$ with the spectral seminorm, then we may identify $\mathcal{M}(A_{\psi,n})$ with the inverse image of $\mathcal{M}(A) \subseteq \mathcal{M}(\mathbb{Q}_p\langle J\rangle)$ in $\mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J\rangle)$; it is closed and Γ_J -stable. We have

$$\cdots \longrightarrow \mathcal{M}(A_{\psi,1}) \longrightarrow \mathcal{M}(A_{\psi,0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow^{\varphi_1^*} \mathcal{M}(\mathbb{Q}_p(\epsilon_1)\langle J \rangle) \xrightarrow{\varphi_0^*} \mathcal{M}(\mathbb{Q}_p\langle J \rangle).$$

Let $A_{\psi,\infty}$ be the completion of the direct limit

$$A_{\psi,0} \stackrel{\varphi_0}{\rightarrow} A_{\psi,1} \stackrel{\varphi_1}{\rightarrow} \cdots,$$

which carries an action of Γ_J with fixed subring $A_{\psi,0} \cong A$.

let
$$\mathfrak{o}_{\overline{A_{\psi}}}$$
 be the inverse limit of

$$\cdots \stackrel{arphi}{ o} \mathfrak{o}_{A_{\psi,\infty}}/(p) \stackrel{arphi}{ o} \mathfrak{o}_{A_{\psi,\infty}}/(p),$$

and let
$$\overline{A_{\psi}} = \mathfrak{o}_{\overline{A_{+}}}[\overline{\pi}^{-1}].$$

Equip $A_{\psi,n}$ with the spectral seminorm, then we may identify $\mathcal{M}(A_{\psi,n})$ with the inverse image of $\mathcal{M}(A) \subseteq \mathcal{M}(\mathbb{Q}_p\langle J\rangle)$ in $\mathcal{M}(\mathbb{Q}_p(\epsilon_n)\langle J\rangle)$; it is closed and Γ_J -stable. We have

$$\cdots \longrightarrow \mathcal{M}(A_{\psi,1}) \longrightarrow \mathcal{M}(A_{\psi,0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow^{\varphi_1^*} \mathcal{M}(\mathbb{Q}_{\rho}(\epsilon_1)\langle J \rangle) \xrightarrow{\varphi_0^*} \mathcal{M}(\mathbb{Q}_{\rho}\langle J \rangle).$$

Let $A_{\psi,\infty}$ be the completion of the direct limit

$$A_{\psi,0} \stackrel{\varphi_0}{\rightarrow} A_{\psi,1} \stackrel{\varphi_1}{\rightarrow} \cdots,$$

which carries an action of Γ_J with fixed subring $A_{\psi,0}\cong A$. Let $\mathfrak{o}_{\overline{A_{i,0}}}$ be the inverse limit of

$$\cdots \xrightarrow{\varphi} \mathfrak{o}_{A_{ib,\infty}}/(p) \xrightarrow{\varphi} \mathfrak{o}_{A_{ib,\infty}}/(p),$$

and let $\overline{A_{\psi}} = \mathfrak{o}_{\overline{A_{+}}}[\overline{\pi}^{-1}].$

Proposition

 $A_{\psi,\infty}$ is canonically isomorphic to $\tilde{\mathcal{R}}_{A_{\psi}}^{\mathsf{int},1}/(z)$.

We take A_{ψ} to be the "norm ring" for (A, ψ) .

$$\begin{split} \tilde{\mathbf{B}}_{\psi} &= W(\overline{A}_{\psi})[p^{-1}], \qquad \tilde{\mathbf{B}}_{\psi}^{\dagger,r} = \tilde{\mathcal{R}}_{\overline{A}_{\psi}}^{\mathrm{bd,r}}, \qquad \tilde{\mathbf{B}}_{\psi}^{\dagger} = \tilde{\mathcal{R}}_{\overline{A}_{\psi}}^{\mathrm{bd}}, \\ \tilde{\mathbf{C}}_{\psi}^{[s,r]} &= \tilde{\mathcal{R}}_{\overline{A}_{\psi}}^{[s,r]}, \qquad \tilde{\mathbf{C}}_{\psi}^{r} = \tilde{\mathcal{R}}_{\overline{A}_{\psi}}^{r}, \qquad \tilde{\mathbf{C}}_{\psi} = \tilde{\mathcal{R}}_{\overline{A}_{\psi}}. \end{split}$$

For $0 < s \le r$, let $\mathbf{C}_{\psi}^{[s,r]}$ be the completion of $\mathfrak{o}_{A}[\![\pi]\!]$ in $\tilde{\mathbf{C}}_{\psi}^{[s,r]}$ under the norm $\max\{\lambda(\overline{\beta}_{\psi}^{r}),\lambda(\overline{\beta}_{\psi}^{s})\}$. Then put

$$\begin{split} \mathbf{C}_{\psi}^r &= \cap_{0 < s \le r} \mathbf{C}_{\psi}^{[s,r]}, \quad \mathbf{C}_{\psi} = \cup_{r > 0} \mathbf{C}_{\psi}^r, \\ \mathbf{B}_{\psi}^{\dagger,r} &= \tilde{\mathbf{B}}_{\psi}^{\dagger} \cap \mathbf{C}_{\psi}^r, \qquad \mathbf{B}_{\psi}^{\dagger} = \cup_{r > 0} \mathbf{B}_{\psi}^r. \end{split}$$

Let \mathbf{B}_{ψ} be the *p*-adic completion of $\mathbf{B}_{\psi}^{\dagger}$.

Theorem (Kedlaya-L.)

The following categories are equivalent.

- (1) The category of étale \mathbb{Q}_p -local systems over $\mathcal{M}(A)$.
- (2) The category of étale (φ, Γ) -modules over ${f B}_{\psi}$.
- (3) The category of étale (φ, Γ) -modules over $\mathbf{B}_{\psi}^{\dagger}$.
- (4) The category of étale (φ, Γ) -modules over \mathbf{C}_{ψ} .

More precisely, the functors from (3) to (2) and from (3) to (4) are base extensions.

K.S. Kedlaya and R. Liu, Relative *p*-adic Hodge theory *I*, http://math.mit.edu/ kedlaya/papers/.