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P-adic Integral

Let X be a smooth complete variety over a non-archimedean local
field K with the ring of integers R C K and the residue field k of order

q.
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A top degree differential form w € T'(X, Q¢ X) defines a finite real

valued measure |w| on the set of K-points of X. By base change, for
every finite extension K C K’, we get a number fX(K,) |w]-
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valued measure |w| on the set of K-points of X. By base change, for
every finite extension K C K’, we get a number fX(K,) |w]-

Definition. A weak Néron model of X is a smooth scheme V over R
whose generic fiber is X and such that every point of X with values in
an unramified extension K’ O K extends to a R’-point of V.
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P-adic Integral

Let X be a smooth complete variety over a non-archimedean local
field K with the ring of integers R C K and the residue field k of order

q.

A top degree differential form w € T'(X, Q¢ X) defines a finite real
valued measure |w| on the set of K-points of X. By base change, for
every finite extension K C K’, we get a number fX(K,) |w]-

Definition. A weak Néron model of X is a smooth scheme V over R
whose generic fiber is X and such that every point of X with values in
an unramified extension K’ O K extends to a R’-point of V.

Example. If X is a proper regular model of X over R, then
V= X — Xsing is a weak Néron model.

A weak Néron model always exists but it is not unique.
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P-adic Integral

From now on we assume that the canonical bundle Q™ is trivial.
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P-adic Integral

From now on we assume that the canonical bundle Q™ is trivial.
If V is a weak Néron model of X, we have

/ | = Z\V° g, 0.1)

where V? are the connected components of the special fiber of VV and
r; € Z are defined by div(w) = >, r[V?].
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If V is a weak Néron model of X, we have

/ | = Z\V° g, 0.1)

where V? are the connected components of the special fiber of VV and
r; € Z are defined by div(w) = >, r[V?].

In particular, the quantity at the right-hand side of the equation (0.1)
does not depend on the choice of V (but does depend on w).
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P-adic Integral

From now on we assume that the canonical bundle Q™ is trivial.
If V is a weak Néron model of X, we have

/ | = Z\V° g, 0.1)

where V? are the connected components of the special fiber of VV and
r; € Z are defined by div(w) = >, r[V?].

In particular, the quantity at the right-hand side of the equation (0.1)
does not depend on the choice of V (but does depend on w).

The renormalized integral
[ = vetlg i
X(K) ;
is a (birational) invariant of X.
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P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:

| = S CTHE L H O Q). 02)
X(K) 5
where [ is prime number different from the characteristic of k and

F € Gal(K/K) is a lifting of the Frobenius automorphism

Fr € Gal(k/k).
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/ = (-1 T(F !, H(Xg, Q)), (0.2)
X(K)
where [ is prime number different from the characteristic of k and
F € Gal(K/K) is a lifting of the Frobenius automorphism
Fr € Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.
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P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:

/ = (-1 T(F !, H(Xg, Q)), (0.2)
X(K)
where [ is prime number different from the characteristic of k and
F € Gal(K/K) is a lifting of the Frobenius automorphism
Fr € Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.

If X admits a proper strictly semi-stable model over R then the formula
(0.2) holds modulo q — 1.
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P-adic Integral

Proof. Let X be a strictly semi-stable model of X. Then
Jxky = | Ysm(k)|(mod(q — 1)).
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P-adic Integral

Proof. Let X be a strictly semi-stable model of X. Then
Jxky = | Ysm(k)|(mod(q — 1)).
On the other hand, by the Grothendieck-Lefschetz formula

DUV THE HOG @) = ST H v(@) =

]

SN (THF L H (W(@)y).

yeY(k) i
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P-adic Integral

Proof. Let X be a strictly semi-stable model of X. Then
Jxky = | Ysm(k)|(mod(q — 1)).
On the other hand, by the Grothendieck-Lefschetz formula
S (YTHF T H (X, Q) = D> (1Y TH(F T H (Y v(@) =
; ;
oD (E)THFT L H(W(@)y).
yeY(k) i
If y € Ysm(k) the corresponding sum equals 1.
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P-adic Integral

Proof. Let X be a strictly semi-stable model of X. Then
Jxky = | Ysm(k)|(mod(q — 1)).
On the other hand, by the Grothendieck-Lefschetz formula
S (YTHF T H (X, Q) = D> (1Y TH(F T H (Y v(@) =
J J
oD (E)THFT L H(W(@)y).
yeY(k) i

If y € Ysm(k) the corresponding sum equals 1.

If y € Ysing(K) then H/(W(Q))), ~ N T(—i), where T is a vector
space with the trivial action of Gal(K/K). Thus,

D THETLH(W(@Q)y) = 3 _(=1Ydim \ T = 0(mod(q — 1)).

i i
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Motivic Integral.

Definition. Let k be a field. The Grothendieck group of varieties over
k, Ko(Vary), is the free group on the isomorphism classes of varieties
modulo the relation [Y] = [Z] + [Y\Z], where Z C Y is a closed
subvariety. In addition to being a group, Ky( Vark) has a ring structure
given by [Y xx Z] = [Y] - [Z]. Let Z(—i) represent the class of A’ in
Ko(Vary) and denote the localization Ko(Vary)[Z(—1)~"] by
Ko(Var)oc-
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Notation: Z(i) := Z(—i)~", for i > 0. M(i) :== M - Z(i), for i € Z,

M € Ko(Vark)ioc-
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Motivic Integral.

Definition. Let k be a field. The Grothendieck group of varieties over
k, Ko(Vary), is the free group on the isomorphism classes of varieties
modulo the relation [Y] = [Z] + [Y\Z], where Z C Y is a closed
subvariety. In addition to being a group, Ky( Vark) has a ring structure
given by [Y xx Z] = [Y] - [Z]. Let Z(—i) represent the class of A’ in
Ko(Vary) and denote the localization Ko(Vary)[Z(—1)~"] by
Ko(Var)oc-

Notation: Z(i) := Z(—i)~", for i > 0. M(i) :== M - Z(i), for i € Z,

M € Ko(Vark)ioc-

Theorem ( Kontsevich, Loeser-Sebag)

Let K be a non-archimedean field with a perfect residue field k, and let
X be a smooth Calabi-Yau variety over K. Then the element (called
the motivic integral) [, := > ;[V1(ri — min; r;) € Ko(Vark)joc, is
independent of the choice of a weak Néron model V.
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Motivic Integral.

If k = Fq, we recover the normalized volume by taking the image of
the motivic integral under the homomorphism

Ko(Vare,)ioc — Zyq) [Z] ~ |Z(Fq)l.
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Motivic Integral.

If k = Fq, we recover the normalized volume by taking the image of
the motivic integral under the homomorphism

KO(VarIFq)loc — Zyq) [Z] ~ [Z(Fq)l-

Let
RH%e : Ko(Varc) o — Ko(MHS)

be the homomorphism from the Grothendieck ring of varieties to the
Grothendieck ring of mixed Q-Hodge structures that takes the class of
a variety Z to 3°(—1)/[HL(Z)]. The Hodge integral RH099e( [} is the
image of the motivic integral under the above morphism of
Grothendieck rings.
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The limit Hodge structure of a variety over C((t)).

Building upon the Schmid-Steenbrink construction, with every smooth
projective variety X over C((t)) we associate a mixed Hodge structure
H™(lim X) equipped with the monodromy action, called the limit
Hodge structure. A rough idea: Steenbrink attached a mixed Hodge
structure to every normal crossing log scheme over the log point.
Applying his construction to the special fiber Y of a strictly
semi-stable model X of X over R = C[[t]] we get our H™(lim X). We
prove the independence of the choice of a model and the functoriality.
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Building upon the Schmid-Steenbrink construction, with every smooth
projective variety X over C((t)) we associate a mixed Hodge structure
H™(lim X) equipped with the monodromy action, called the limit
Hodge structure. A rough idea: Steenbrink attached a mixed Hodge
structure to every normal crossing log scheme over the log point.
Applying his construction to the special fiber Y of a strictly
semi-stable model X of X over R = C[[t]] we get our H™(lim X). We
prove the independence of the choice of a model and the functoriality.

Theorem

For every strictly semi-stable degeneration of Calabi-Yau varieties the
image of RH°99¢( [, ) in the quotient ring Ko(MHS)/(Q(1) — Q) equals
the alternated sum of the classes of the limit Hodge structures:

RHodge(/X) = (-1)[H'(lim X)] mod(Q(1) — Q).
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K3 surfaces over C((t)).

Let X be a smooth projective K3 surface over C((t)) and let
H?(lim X) = (H?(lim X, Z), W2 ¢ H?(lim X, Q), F; ¢ H3(lim X, C))

be the corresponding limit Hodge structure. Assume that the
monodromy acts on H?(lim X, Z) by a unipotent operator. Then, its
logarithm is known to be integral:

N : H?(lim X,Z) — H?(im X, Z).
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K3 surfaces over C((t)).

Let X be a smooth projective K3 surface over C((t)) and let
H?(lim X) = (H?(lim X, Z), W2 ¢ H?(lim X, Q), F; ¢ H3(lim X, C))

be the corresponding limit Hodge structure. Assume that the
monodromy acts on H?(lim X, Z) by a unipotent operator. Then, its
logarithm is known to be integral:

N : H?(lim X,Z) — H?(im X, Z).
Set WZ = W2 n H?(lim X, Z). The morphisms
GrN': WZ/WF — WE/WE
GrN?: WZ/WE — WE
are injective and have finite cokernels. Let ry, r» be their orders.
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K3 surfaces over C((t)).

Theorem

Let X be a smooth projective K3 surfaces over C((t)),

Xe = X ®c((t)) C((¥/t)). Assume that X has a strictly semi-stable
model over C[[t]]. Then N = 0.

v
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K3 surfaces over C((t)).

Let X be a smooth projective K3 surfaces over C((t)),

Xe = X ®c((t)) C((¥/t)). Assume that X has a strictly semi-stable
model over C[[t]]. Then N = 0.

(a) If N> =0 then

/ = 2Z(0)—(ey/r1+1)[E]+20Z(—1)+(ev/r1—1)[E](—1)+2Z(-2),
Xe

where E is the elliptic curve defined by the rank 2 Hodge structure
on W2 = W2 n H3(lim X, Z).

v
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K3 surfaces over C((t)).

Let X be a smooth projective K3 surfaces over C((t)),

Xe = X ®c((t)) C((¥/t)). Assume that X has a strictly semi-stable
model over C[[t]]. Then N = 0.

(a) If N> =0 then
/ = 27(0)—(ev/ri+1)[E]+20Z(—1)+(evr1—1)[E](—1)+2Z(-2),
Xe

where E is the elliptic curve defined by the rank 2 Hodge structure
on W2 = W2 n H3(lim X, Z).

(b) If N2 + 0 then

/Xe = (ezer 4 2) Z(0) + (20 — €2r2)Z(—1) + (e;rg + 2) Z(-2).

v
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Let us explain the idea of our proof assuming that e = 1. Let C be a
smooth curve over C, a € C a point, C = C — a. First, using the
theory of Hilbert schemes and Artin’s approximation theorem, we
reduce the proof to the case when X is extended to a smooth proper
scheme X over C.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 11/18



Let us explain the idea of our proof assuming that e = 1. Let C be a
smooth curve over C, a € C a point, C = C — a. First, using the
theory of Hilbert schemes and Artin’s approximation theorem, we
reduce the proof to the case when X is extended to a smooth proper
scheme X over C.

The rest of the proof is based on a result of Kulikov asserting the

existence of a strictly semi-stable model X T, C such that the
canonical bundle w+; is trivial over an open neighborhood of the
special fiber Y. For any such model, we have

] = e,

where Ys, C Y is the smooth locus of Y.
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Moreover, the special fiber Y has a very special form. If N° # 0 the
Clemens polytope CI(Y) of Y is a triangulation of a sphere, all the
irreducible components of Y are smooth rational surfaces and all the
double curves are rational.
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irreducible components of Y are smooth rational surfaces and all the
double curves are rational.

It follows that

/X =0 Z(O) + CgZ(*‘l) + CBZ(72)7

for some ¢; € Z.
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Moreover, the special fiber Y has a very special form. If N° # 0 the
Clemens polytope CI(Y) of Y is a triangulation of a sphere, all the
irreducible components of Y are smooth rational surfaces and all the
double curves are rational.

It follows that

/X — ¢\ Z(0) + (1) + CoZ(~2),
for some ¢; € Z.
Friedman and Scattone proved that the canonical morphism
H2(CI(Y),Z) = H2,,(Y,Z) — WF
is an isomorphism. Let
¢ - H3(lim X, Z) — Ha(CI(Y), Z).

be the dual epiomorphism.
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For every x € H?(lim X, Z), we have the Picard-Lefschetz formula
<X, NP(x)>=) &

]
i

where ¢(x) = > a;6; and ¢; are the 2-simplecies of CI(Y), a; € Z.
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For every x € H?(lim X, Z), we have the Picard-Lefschetz formula
< x, N?3(x Z &,
where ¢(x) = > a;6; and ¢; are the 2-simplecies of CI(Y), a; € Z.
Pick x such that ¢(x) is a generator of Ho(C/(Y),Z). Because, CI(Y)
is a manifold, we get
X) = Z :I:(Sj
r, =< x, N?(x) >= |2 — simplicies|

The proof is completed using the mod(Q — Q(1))Theorem.
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For every x € H?(lim X, Z), we have the Picard-Lefschetz formula

< x, N?3(x Zaz

where ¢(x) = > a;6; and ¢; are the 2-simplecies of CI(Y), a; € Z.
Pick x such that ¢(x) is a generator of Ho(C/(Y),Z). Because, CI(Y)
is a manifold, we get

X) = Z :I:(Sj

r, =< x, N?(x) >= |2 — simplicies|

The proof is completed using the mod(Q — Q(1))Theorem.

If N2 = 0 the proof is similar but simpler.
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Monodromy pairing

Let X be a smooth scheme over a non-archimedean field K, X%” the

analytic space associated with the scheme X @ K over the
completion of an algebraic closure K, and let |X§”] be the underlying

topological space.
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Monodromy pairing

Let X be a smooth scheme over a non-archimedean field K, X%” the

analytic space associated with the scheme X @ K over the
completion of an algebraic closure K, and let \X%’] be the underlying

topological space.
We denote by '7’(X) the singular cohomology of the space |X§”| with

coefficients in a commutative ring A. Equivalently, the group I'y’(X)
can be defined as the cohomology of rigid analytic space associated

with X @ K with coefficients in the constant sheaf A for the Tate
G-topology.
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Monodromy pairing

Let X be a smooth scheme over a non-archimedean field K, X%” the

analytic space associated with the scheme X @ K over the
completion of an algebraic closure K, and let \X%’] be the underlying
topological space.

We denote by '7’(X) the singular cohomology of the space |X§”| with
coefficients in a commutative ring A. Equivalently, the group I'y’(X)
can be defiged as the cohomology of rigid analytic space associated
with X @ K with coefficients in the constant sheaf A for the Tate
G-topology.

It is proven by Berkovich, Hrushovsky and Loeser that I'7(X) is a
finitely generated A-module and that it is a birational invariant of
(smooth) X.
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Monodromy pairing

Let X be a smooth scheme over a non-archimedean field K, X%” the

analytic space associated with the scheme X @ K over the
completion of an algebraic closure K, and let \X%’] be the underlying

topological space.
We denote by '7’(X) the singular cohomology of the space |X§”| with

coefficients in a commutative ring A. Equivalently, the group I'y’(X)
can be defined as the cohomology of rigid analytic space associated

with X @ K with coefficients in the constant sheaf A for the Tate
G-topology.
It is proven by Berkovich, Hrushovsky and Loeser that I'7(X) is a
finitely generated A-module and that it is a birational invariant of
(smooth) X.
If X is a proper strictly semi-stable scheme over R generic and
special fibers X, Y, we have

HZ (Y @ k,\) = TR(X).
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Monodromy pairing

If char k # |, we have

[ (X) < Im(H™(Xe, Q))(m) 25 H™(Xe, Q))),

where N is the logarithm of the monodromy operator.

A different description of the space 'fj (X) in the case of finite residue
field was obtained earlier by Berkovich.
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Monodromy pairing

Let X be a smooth proper variety of dimension d. Given
x,y € N9H9(Xz, Q) we set

d(d—1)

X y)=(-1)"2 <xy >,

where y’ € Hd(X?, Q) is an element such that N9y’ = y and <, > is
the Poincaré pairing.
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Monodromy pairing

Let X be a smooth proper variety of dimension d. Given
x,y € N9H9(Xz, Q) we set

d(d—1)

X y)=(-1)"2 <xy >,

where y’ € Hd(X?, Q) is an element such that N9y’ = y and <, > is
the Poincaré pairing.

The restriction of (x, y), to T{(X) defines a positive pairing (the
monodromy pairing)

() TAX)@Tg(X) - Q (0.3)

The pairing (0.3) is independent of | and it is a birational invariant of X.

V.
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Monodromy pairing

We define a numeric (birational) invariant of X to be

1

I’d(X, K) = W()
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The formula

We shall say that a smooth projective d-dimensional Calabi-Yau
variety X over K is maximally degenerated if F9(X) ® Q # 0.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 18/18



The formula

We shall say that a smooth projective d-dimensional Calabi-Yau
variety X over K is maximally degenerated if F9(X) ® Q # 0.

Let X be a smooth projective maximally degenerated K3 surface over
K. Then There exists a finite extension K’ > K such that for every
finite extension L © K’ of ramification index e

e €%r

/X®L = <T + 2) Q(0) + (20 — €2r2)Q(—1) + (T i 2) Q(-2).
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v

The Conjecture is true if X is a Kummer K3 surface and char k + 2.
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