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P-adic Integral

Let X be a smooth complete variety over a non-archimedean local
field K with the ring of integers R ⊂ K and the residue field k of order
q.

A top degree differential form ω ∈ Γ(X ,Ωdim X
X ) defines a finite real

valued measure |ω| on the set of K -points of X . By base change, for
every finite extension K ⊂ K ′, we get a number

∫
X(K ′) |ω|.

Definition. A weak Néron model of X is a smooth scheme V over R
whose generic fiber is X and such that every point of X with values in
an unramified extension K ′ ⊃ K extends to a R′-point of V.

Example. If X is a proper regular model of X over R, then
V := X − Xsing is a weak Néron model.

A weak Néron model always exists but it is not unique.
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P-adic Integral

From now on we assume that the canonical bundle Ωdim X
X is trivial.

If V is a weak Néron model of X , we have∫
X(K )
|ω| =

∑
i

|V ◦i (k)|q−ri , (0.1)

where V ◦i are the connected components of the special fiber of V and
ri ∈ Z are defined by div(ω) =

∑
i ri [V ◦i ].

In particular, the quantity at the right-hand side of the equation (0.1)
does not depend on the choice of V (but does depend on ω).
The renormalized integral∫

X(K )
:=
∑

i

[V ◦i (k)]q−ri +mini ri

is a (birational) invariant of X .
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P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:∫

X(K )
=
∑

j

(−1)jTr(F−1,H j(XK ,Ql)), (0.2)

where l is prime number different from the characteristic of k and
F ∈ Gal(K/K ) is a lifting of the Frobenius automorphism
Fr ∈ Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.

Theorem
If X admits a proper strictly semi-stable model over R then the formula
(0.2) holds modulo q − 1.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 4 / 18



P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:∫

X(K )
=
∑

j

(−1)jTr(F−1,H j(XK ,Ql)), (0.2)

where l is prime number different from the characteristic of k and
F ∈ Gal(K/K ) is a lifting of the Frobenius automorphism
Fr ∈ Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.

Theorem
If X admits a proper strictly semi-stable model over R then the formula
(0.2) holds modulo q − 1.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 4 / 18



P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:∫

X(K )
=
∑

j

(−1)jTr(F−1,H j(XK ,Ql)), (0.2)

where l is prime number different from the characteristic of k and
F ∈ Gal(K/K ) is a lifting of the Frobenius automorphism
Fr ∈ Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.

Theorem
If X admits a proper strictly semi-stable model over R then the formula
(0.2) holds modulo q − 1.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 4 / 18



P-adic Integral

If X has a smooth and proper model over R the
Grothendieck-Lefschetz formula together with the Proper Base
Change and Local Acyclicity theorems yield a cohomological
interpretation for the normalized measure:∫

X(K )
=
∑

j

(−1)jTr(F−1,H j(XK ,Ql)), (0.2)

where l is prime number different from the characteristic of k and
F ∈ Gal(K/K ) is a lifting of the Frobenius automorphism
Fr ∈ Gal(k/k).
Problem. Find a generalization of the formula (0.2) to the case of bad
reduction.

Theorem
If X admits a proper strictly semi-stable model over R then the formula
(0.2) holds modulo q − 1.

Vologodsky, Stewart (University of Oregon) Motivic Integral of K3 Surfaces November 26, 2010 4 / 18



P-adic Integral

Proof. Let X be a strictly semi-stable model of X . Then∫
X(K ) ≡ |Ysm(k)|(mod(q − 1)).

On the other hand, by the Grothendieck-Lefschetz formula∑
j

(−1)jTr(F−1,H j(XK ,Ql)) =
∑

j

(−1)jTr(F−1,H j(Yk ,Ψ(Ql))) =

∑
y∈Y (k)

∑
i

(−1)iTr(F−1,Hi(Ψ(Ql))y ).

If y ∈ Ysm(k) the corresponding sum equals 1.
If y ∈ Ysing(k) then Hi(Ψ(Ql))y '

∧i T (−i), where T is a vector
space with the trivial action of Gal(K/K ). Thus,

∑
i

(−1)iTr(F−1,Hi(Ψ(Ql))y ) ≡
∑

i

(−1)idim
i∧

T ≡ 0(mod(q − 1)).
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Motivic Integral.

Definition. Let k be a field. The Grothendieck group of varieties over
k , K0(Vark ), is the free group on the isomorphism classes of varieties
modulo the relation [Y ] = [Z ] + [Y\Z ], where Z ⊂ Y is a closed
subvariety. In addition to being a group, K0(Vark ) has a ring structure
given by [Y ×k Z ] = [Y ] · [Z ]. Let Z(−i) represent the class of Ai in
K0(Vark ) and denote the localization K0(Vark )[Z(−1)−1] by
K0(Vark )loc .
Notation: Z(i) := Z(−i)−1, for i > 0. M(i) := M · Z(i), for i ∈ Z,
M ∈ K0(Vark )loc .

Theorem ( Kontsevich, Loeser-Sebag)
Let K be a non-archimedean field with a perfect residue field k, and let
X be a smooth Calabi-Yau variety over K . Then the element (called
the motivic integral)

∫
X :=

∑
i [V
◦
i ](ri −mini ri) ∈ K0(Vark )loc , is

independent of the choice of a weak Néron model V.
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Motivic Integral.

If k = Fq, we recover the normalized volume by taking the image of
the motivic integral under the homomorphism

K0(VarFq )loc → Z(q) [Z ] |Z (Fq)|.

Let
RHodge : K0(VarC)loc → K0(MHS)

be the homomorphism from the Grothendieck ring of varieties to the
Grothendieck ring of mixed Q-Hodge structures that takes the class of
a variety Z to

∑
(−1)i [H i

c(Z )]. The Hodge integral RHodge(
∫
X ) is the

image of the motivic integral under the above morphism of
Grothendieck rings.
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The limit Hodge structure of a variety over C((t)).

Building upon the Schmid-Steenbrink construction, with every smooth
projective variety X over C((t)) we associate a mixed Hodge structure
Hm(lim X ) equipped with the monodromy action, called the limit
Hodge structure. A rough idea: Steenbrink attached a mixed Hodge
structure to every normal crossing log scheme over the log point.
Applying his construction to the special fiber Y of a strictly
semi-stable model X of X over R = C[[t ]] we get our Hm(lim X ). We
prove the independence of the choice of a model and the functoriality.

Theorem
For every strictly semi-stable degeneration of Calabi-Yau varieties the
image of RHodge(

∫
X ) in the quotient ring K0(MHS)/(Q(1)−Q) equals

the alternated sum of the classes of the limit Hodge structures:

RHodge(

∫
X

) ≡
∑

(−1)i [H i(lim X )] mod(Q(1)−Q).
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K3 surfaces over C((t)).

Let X be a smooth projective K3 surface over C((t)) and let

H2(lim X ) = (H2(lim X ,Z),W Q
i ⊂ H2(lim X ,Q),Fi ⊂ H2(lim X ,C))

be the corresponding limit Hodge structure. Assume that the
monodromy acts on H2(lim X ,Z) by a unipotent operator. Then, its
logarithm is known to be integral:

N : H2(lim X ,Z)→ H2(lim X ,Z).

Set W Z
i = W Q

i ∩ H2(lim X ,Z). The morphisms

Gr N1 : W Z
3 /W

Z
2 →W Z

1 /W
Z
0

Gr N2 : W Z
4 /W

Z
3 →W Z

0

are injective and have finite cokernels. Let r1, r2 be their orders.
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K3 surfaces over C((t)).

Theorem
Let X be a smooth projective K3 surfaces over C((t)),
Xe = X ⊗C((t)) C(( e

√
t)). Assume that X has a strictly semi-stable

model over C[[t ]]. Then N3 = 0.
(a) If N2 = 0 then∫

Xe

= 2Z(0)−(e
√

r1+1)[E ]+20Z(−1)+(e
√

r1−1)[E ](−1)+2Z(−2),

where E is the elliptic curve defined by the rank 2 Hodge structure
on W Z

1 = W Q
1 ∩ H2(lim X ,Z).

(b) If N2 6= 0 then∫
Xe

=

(
e2r2

2
+ 2
)

Z(0) + (20− e2r2)Z(−1) +

(
e2r2

2
+ 2
)

Z(−2).
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Proof.

Let us explain the idea of our proof assuming that e = 1. Let C be a
smooth curve over C, a ∈ C a point, C = C − a. First, using the
theory of Hilbert schemes and Artin’s approximation theorem, we
reduce the proof to the case when X is extended to a smooth proper
scheme X over C.

The rest of the proof is based on a result of Kulikov asserting the
existence of a strictly semi-stable model X π−→ C such that the
canonical bundle ωX is trivial over an open neighborhood of the
special fiber Y . For any such model, we have∫

X
= [Ysm],

where Ysm ⊂ Y is the smooth locus of Y .
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Proof.

Moreover, the special fiber Y has a very special form. If N2 6= 0 the
Clemens polytope Cl(Y ) of Y is a triangulation of a sphere, all the
irreducible components of Y are smooth rational surfaces and all the
double curves are rational.
It follows that ∫

X
= c1Z(0) + c2Z(−1) + c3Z(−2),

for some ci ∈ Z.
Friedman and Scattone proved that the canonical morphism

H2(Cl(Y ),Z)
∼−→ H2

Zar (Y ,Z)→W Z
0

is an isomorphism. Let

φ : H2(lim X ,Z)� H2(Cl(Y ),Z).

be the dual epiomorphism.
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Proof.

For every x ∈ H2(lim X ,Z), we have the Picard-Lefschetz formula

< x ,N2(x) >=
∑

j

a2
j ,

where φ(x) =
∑

ajδj and δj are the 2-simplecies of Cl(Y ), aj ∈ Z.

Pick x such that φ(x) is a generator of H2(Cl(Y ),Z). Because, Cl(Y )
is a manifold, we get

φ(x) =
∑
±δj

r2 =< x ,N2(x) >= |2− simplicies|

The proof is completed using the mod(Q−Q(1))Theorem.

If N2 = 0 the proof is similar but simpler.
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Monodromy pairing

Let X be a smooth scheme over a non-archimedean field K , X anbK the

analytic space associated with the scheme X ⊗K K̂ over the
completion of an algebraic closure K , and let |X anbK | be the underlying
topological space.
We denote by Γm

Λ (X ) the singular cohomology of the space |X anbK | with

coefficients in a commutative ring Λ. Equivalently, the group Γm
Λ (X )

can be defined as the cohomology of rigid analytic space associated
with X ⊗K K̂ with coefficients in the constant sheaf Λ for the Tate
G-topology.
It is proven by Berkovich, Hrushovsky and Loeser that Γm

Λ (X ) is a
finitely generated Λ-module and that it is a birational invariant of
(smooth) X .
If X is a proper strictly semi-stable scheme over R generic and
special fibers X , Y , we have

Hm
Zar (Y ⊗ k ,Λ)

∼−→ Γm
Λ (X ).
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Monodromy pairing

Theorem
If char k 6= l , we have

Γm
Ql

(X )
∼−→ Im(Hm(XK ,Ql)(m)

Nm
−→ Hm(XK ,Ql)),

where N is the logarithm of the monodromy operator.

A different description of the space Γm
Ql

(X ) in the case of finite residue
field was obtained earlier by Berkovich.
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Monodromy pairing

Let X be a smooth proper variety of dimension d . Given
x , y ∈ NdHd (XK ,Ql) we set

(x , y)l = (−1)
d(d−1)

2 < x , y ′ >,

where y ′ ∈ Hd (XK ,Ql) is an element such that Ndy ′ = y and <,> is
the Poincaré pairing.

Theorem
The restriction of (x , y)l to Γm

Q(X ) defines a positive pairing (the
monodromy pairing)

(·, ·) : Γd
Q(X )⊗ Γd

Q(X )→ Q (0.3)

The pairing (0.3) is independent of l and it is a birational invariant of X .
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Monodromy pairing

We define a numeric (birational) invariant of X to be

rd (X ,K ) =
1

Disc(·, ·)
.
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The formula

We shall say that a smooth projective d-dimensional Calabi-Yau
variety X over K is maximally degenerated if Γd (X )⊗Q 6= 0.

Conjecture

Let X be a smooth projective maximally degenerated K3 surface over
K . Then There exists a finite extension K ′ ⊃ K such that for every
finite extension L ⊃ K ′ of ramification index e∫

X⊗L
=

(
e2r2

2
+ 2
)

Q(0) + (20− e2r2)Q(−1) +

(
e2r2

2
+ 2
)

Q(−2).

Theorem
The Conjecture is true if X is a Kummer K3 surface and char k 6= 2.
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