
The arithmetic curve, Witt vectors, and zeta

jt work with C. Consani

– The counting function and the adèle class space.

– The BC-system, Witt vectors and p-adic representa-

tions.

– First hints of the arithmetic curve.
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Hasse-Weil zeta function

For an irreducible, smooth and projective algebraic curve

X over a finite field Fq, the Hasse-Weil zeta function is

of the form

Z(q, T ) = exp

∑
r≥1

N(qr)T r/r


where the counting function N(qr) is the number #X(Fqr)
of points over Fqr.
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Soulé’s limit definition for q → 1

N(q) given, and defined for q ∈ [1,∞)

Z(q, T ) = exp

∑
r≥1

N(qr)T r/r


ζN(s) = lim

q→1
(q − 1)χZ(q, q−s) , χ = N(1)

Problem :

Can one find N(q) such that ζN(s) is the complete Rie-

mann zeta function :

ζN(s) = ζQ(s) = π−s/2Γ(s/2)ζ(s)
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Two difficulties

N(1) = −∞ does not allow one to use the limit defini-

tion and seems to contradict the positivity of N(q).

Lemma :

∂sζN(s)

ζN(s)
= −

∫ ∞

1
N(u)u−sd∗u

From the lemma one gets

∂sζQ(s)

ζQ(s)
= −

∫ ∞

1
N(u)u−sd∗u .
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Theorem (CC)

(1) The counting function N(q) satisfying the above
requirements exists as a distribution and is given by the
formula

N(q) = q −
d

dq

∑
ρ∈Z

order(ρ)
qρ+1

ρ+1

+1

where Z is the set of non-trivial zeros of the Riemann
zeta function and the derivative is taken in the sense
of distributions.

(2) The function N(q) is positive (as a distribution) for
q > 1.

(3) The value N(1) is equal to −∞ and reflects precisely
the distribution of the zeros of zeta in E logE.

5



According to Soulé the value N(1) of the counting
function is the Euler characteristic of the hypotheti-
cal “curve” C over F1. Since C has infinite genus one
thus gets a priori that

N(1) = −∞
hence creating a tension with the expected positivity of
N(q) for q > 1. This tension is resolved by the Theorem,
since the distribution N(q) is positive for q > 1 but its
value at q = 1 is given formally by

N(1) = 2− lim
ϵ→0

ω(1 + ϵ)− ω(1)

ϵ

∼ −
1

2
E logE , E =

1

ϵ

whose behavior when ϵ → 0 even reflects the density of
zeros.
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Curve C = SpecZ ?

While the counting function associated to an algebraic

variety defined over a finite field takes only integer va-

lues this is no more the case for the counting function

N(q) described above. In the function field case the

counting function N(q) counts the number of rational

points of the associated curve fixed under the action

of the corresponding power of the arithmetic Frobenius

and for this reason one finds that N(qk) ≤ N(qℓ) when k

divides ℓ. This is no longer the case for the distribution

N(u) which has a contribution of the form

κ(u) =
u2

u2 − 1
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Explicit Formulas (Riemann)

One lets

ĝ(s) =
∫ ∞

1
g(u)usd∗u

The explicit formula then takes the form

ĝ(0) + ĝ(1)−
∑
ρ∈Z

order(ρ)ĝ(ρ)

=
∑
p

∞∑
m=1

log p g(pm)+

(
γ

2
+

logπ

2
)g(1) +

∫ ∞

1

t2g(t)− g(1)

t2 − 1
d∗t
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Let us apply this formula with the function gx determi-

ned by

gx(u) = u for u ∈ [1, x] , gx(u) = 0 for u > x

The left-hand side of the explicit formula gives, up to

a constant

J(x) =
x2

2
+ x−

∑
ρ∈Z

order(ρ)
x1+ρ

1+ ρ

Thus the left-hand side of the explicit formula gives a

natural primitive J(x) of the counting function N(x).
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It is thus natural to differentiate formally the family gx

with respect to x and see what the right-hand side of

the explicit formula looks like. One gets

∂xgx = uδ(u− x)

It is characterized as a distribution by∫
b(u)gx(u)d

∗u = b(x)

This equality means that the distributional trace of∫
gx(u)ϑud∗u is the distributional trace of ϑx since∫

gx(u)ϑud
∗u = ϑx

Thus we can express N(u) as an intersection number

provided we can interpret the explicit formulas as trace

formulas.
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Explicit Formulas (Weil)

Let K be a global field, α a nontrivial character of AK/K
and α =

∏
αv its local factors. Let h ∈ S(CK) have

compact support. Then

ĥ(0) + ĥ(1)−
∑

χ∈ĈK,1

∑
Zχ̃

ĥ(χ̃, ρ) =
∑
v

∫ ′

K∗
v

h(u−1)

|1− u|
d∗u

where
∫ ′ is normalized by αv and

ĥ(χ, z) =
∫

h(u)χ(u) |u|z d∗u.
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Fixed points of CK on M = AK/K∗

Let (x, u) ∈ M × CK |ux = x, with u ̸= 1. There exists

v ∈ ΣK with

x ∈ pv = {x ∈ M |xv = 0}

The isotropy group of any x ∈ pv contains

K∗
v ⊂ CK , K∗

v = {(kw) | kw = 1 ∀w ̸= v}
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Trace of the action of K∗
v on Kv

(T ξ) (x) =
∫

k(x, y) ξ(y) dy

Trdistr(T ) =
∫

k(x, x) dx .

Tξ(x) = ξ(λx) , k(x, y) = δ(λx− y)

Trdistr(T ) =
∫

k(x, x) dx =
∫

δ(λx− x) dx

=
1

|λ− 1|

∫
δ(z) dz =

1

|λ− 1|

(with z = (λ− 1)x)
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Trace of the action of CK on M = AK/K∗

The transverse space to pv ⊂ M is the local field Kv.

The isotropy group Iv = K∗
v acts as K∗

v on Kv by multi-

plication

ϑ(u)ξ(x) = ξ(u−1x)

Trdistr

(∫
h(u)ϑ(u)d∗u

)
=
∑
v

∫
K∗
v

h(u−1)

|1− u|
d∗u
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Algebraic structure of M = AK/K∗

At first M = AK/K∗ was used as a (noncommutative)

space but the following structures gradually emerged :

– AK/K∗ is a monoid, and one can apply the geometry

of monoids going back to Kato → spectral realization

on H1(P1F1,Ω).

– AK/K∗ is a hyperring over the Krasner hyperfield K,

this gives Πab
1 (X)′ ∼ P (HK) in positive characteristic.
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Spectral realization and H1(P1F1,Ω)

Theorem (CC) : The cohomology H1(P1F1,Ω) gives the

spectral realization of zeros of L-functions. The spec-

trum of the action of CK on H1(P1F1,Ω) by ϑ[−1
2] is

invariant by the symmetry χ(g) 7→ χ(g−1) of Grössen-

charakters of K.

The sheaf Ω[−1
2] is that of half-densities :

f(x)|dx|
1
2 ∼ f(x)|x|

1
2|d∗x|

1
2
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The BC-system as a Hecke algebra

One considers the inclusion P+
Z ⊂ P+

Q where the “ax+b”

algebraic group P is viewed as the functor which to any

abelian ring R assigns the group PR of 2 by 2 matrices

over R of the form

PR =

{(
1 b
0 a

)
; a, b ∈ R , a invertible

}
.

Here Γ0 = P+
Z and Γ = P+

Q denote the restrictions to

a > 0. This inclusion Γ0 ⊂ Γ is such that the orbits of

the left action of Γ0 on Γ/Γ0 are all finite. The same

clearly holds for orbits of Γ0 acting on the right on

Γ0\Γ.
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Hecke algebra HQ

The Hecke algebra HQ(Γ,Γ0) is by definition the convo-
lution algebra of functions of finite support

f : Γ0\Γ → Q,

which fulfill the Γ0-invariance condition

f(γγ0) = f(γ), ∀γ ∈ Γ,∀γ0 ∈ Γ0,

The convolution product is then defined by the formula

(f1 ∗ f2)(γ) =
∑
Γ0\Γ

f1(γγ
−1
1 )f2(γ1) .

HQ = HQ(P
+
Q , P+

Z )

It contains the group ring Q[Q/Z].
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One lets e(r) ∈ Z[Q/Z], be the canonical generators for

r ∈ Q/Z. For each n ∈ N, one defines endomorphisms

σn of the group ring Z[Q/Z] by σn(e(γ)) = e(nγ) and

additive maps ρ̃n by

ρ̃n : Z[Q/Z] → Z[Q/Z] , ρ̃n(e(γ)) =
∑

nγ′=γ

e(γ′).
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Presentation

The integral BC-algebra HZ = Z[Q/Z]oρ̃N is the algebra

generated by the group ring Z[Q/Z], and by the elements

µ̃n and µ∗n, with n ∈ N, which satisfy the relations :

µ̃nxµ∗n = ρ̃n(x)

µ∗nx = σn(x)µ∗n
xµ̃n = µ̃nσn(x),

where ρ̃m, m ∈ N as above, as well as the relations

µ̃nm = µ̃nµ̃m , ∀n,m
µ∗nm = µ∗nµ

∗
m , ∀n,m

µ∗nµ̃n = n

µ̃nµ∗m = µ∗mµ̃n (n,m) = 1.
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Time evolution

Regular representation of the Hecke algebra HC(Γ,Γ0)

in ℓ2(Γ/Γ0), and canonical time evolution.

The time evolution is given by the following one-parameter

group of automorphisms of the algebra HC :

σt(µ̃n) = nitµ̃n, σt(µ
∗
n) = n−itµ∗n,

σt(e(r)) = e(r).
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KMS Condition

Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Fx,y(t) = φ(xσt(y)), Fx,y(t+ iβ) = φ(σt(y)x), ∀t ∈ R.
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Phase transition with SSB

The unique KMS state above critical temperature is

φβ (e(a/b)) = b−β
∏

p prime, p|b

(
1− pβ−1

1− p−1

)
,

and the extremal KMS states below critical temperature
are

φβ,ρ(e(a/b)) =
Tr(πρ(e(a/b))e−βH)

Tr(e−βH)

=
1

ζ(β)

∞∑
n=1

n−βρ(ζna/b),

where πρ is the representation of the algebra A on the
Hilbert space H = ℓ2(N) given by

πρ(µn)ϵm = ϵnm, πρ(e(a/b))ϵm = ρ(ζma/b)ϵm,
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where ρ ∈ Ẑ∗ determines an embedding in C of the

cyclotomic field Qcycl generated by the abstract roots

of unity.
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Three Witt functors

W0(A) = K0(EndA)/K0(A).

The key additional structures are given by

1. The Teichmüller lift which is a multiplicative map

τ : A → W0(A).

2. The Frobenius endomorphisms Fn for n ∈ N.

3. The Verschiebung (shift) additive functorial endo-

morphisms Vn, n ∈ N.

4. The ghost components ghn : W0(A) → A for n ∈ N.
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The BC-system and W0(F̄p)

To each σ : F̄×p ∼ µ(p) ⊂ µ ⊂ C×, corresponds a canoni-

cal isomorphism σ̃

W0(F̄p)
σ̃−→ Z[µ(p)] ⊂ Z[µ] r=id⊗ϵ−→ Z[µ(p)]

The Frobenius Fn and Verschiebung maps Vn of W0(F̄p)
are obtained by restriction of the endomorphisms σn and

maps ρ̃n of Z[µ] = Z[Q/Z] by the formulas

σ̃ ◦ Fn = σn ◦ σ̃ , σ̃ ◦ Vn = r ◦ ρ̃n ◦ σ̃
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This Theorem shows that the integral BC-system with

its full structure is, if one drops the p-component, com-

pletely described as W0(F̄p). As a corollary one gets

a representation πσ of the integral BC-system HZ on

W0(F̄p),

πσ(x)ξ = σ̃−1(r(x)) ξ , πσ(µ
∗
n) = Fn , πσ(µ̃n) = Vn

for all ξ ∈ W0(F̄p), x ∈ Z[Q/Z] and n ∈ N.
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W(A)

L(τ(f)) = (1− tf)−1 ∈ Λ(A) := 1+ tA[[t]]

(1 +
∑

ant
n) ⋆ (1 +

∑
bnt

n) = 1+ a1b1t+

+
(
a21b

2
1 − a2b

2
1 − a21b2 +2a2b2

)
t2 + . . .

φA : W(A) → Λ(A), x = (xn)n∈N 7→ fx(t) =
∏
N
(1−xnt

n)−1
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Wp∞(A)

Wp∞ is the Witt functor using the set of powers of the

prime p.

W(F̄p) = (Wp∞(F̄p))I(p)

where I(p) ⊂ N is the set of integers which are prime to

p. Let Qun
p ⊂ Cp be the completion of the maximal unra-

mified extension Qun
p of p-adic numbers. Then Wp∞(F̄p)

is the completion Zun
p ⊂ Qun

p of the subring generated

by roots of unity.
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W(F̄p) and p-adic representations of the BC-system

Let σ ∈ Xp and ρ : Qcycl,p → Cp the associated embed-

ding. The representation πσ of the integral BC-system

HZ extends to W(F̄p). For n ∈ I(p), the πσ(µn) and for

x ∈ Z[Q/Z], the πσ(x) are Zun
p -linear operators such that

πσ(µn)ϵm = ϵnm, πσ(e(a/b))ϵm = ρ(ζma/b)ϵm , ∀n ∈ N, m, b ∈ I(p).

Moreover

πσ(µp) = Fr−1

is the inverse of the Frobenius automorphism, acting

componentwise as a skew linear operator.
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Partition function and p-adic L-functions

Z(
a

b
, β) =

∑
m∈I(p)

ρ(ζma/b)m
−β

⟨c⟩p−1 = cp−1 , ⟨c⟩s :=
∞∑
0

(s
j

)
(⟨c⟩ − 1)j

Z(
a

b
, β) :=

1

bq

∑
1≤c<bq, c/∈pN

ρ(ζca/b)
⟨c⟩1−β

β − 1

∞∑
0

(1− β

j

)
(
bp

c
)jBj
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The formula

ℓβ(z) =
∞∑

n=1

n−βzn

defines the multiple logarithm and fulfills

z∂zℓβ(z) = ℓβ−1(z) .

For β = 0 the sum gives the rational fraction ℓ0(z) =
z

1−z and this shows that when β ∈ −N is a negative

integer ℓβ(z) is a rational fraction. Thus it makes sense

over any field. For β a negative odd integer of the form

β = 1−m = 1− k(p− 1), one has

(1− p−βFr)−1Z(
a

b
, β) = ℓβ(ρ(ζa/b)) ∈ Qcyc

which is formally independent of the prime p.
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KMS at a prime p

Since when β ∈ −N is a negative integer ℓβ(z) is a

rational fraction, one can prove identities for arbitrary

β ∈ D by checking them on these special values. For

any m ∈ N and ζm a primitive m-th root of unity, one

has

1

m

m−1∑
j=0

ℓβ(ζ
j
mx) = m−βℓβ(x

m)

One can show the analogue of the KMSβ condition for

the Cp-valued functionals on the integral BC-system HZ
such that, in particular,

φβ,ρ(e(a/b)) =
1

Z(β)
Zρ(

a

b
, β).

34



First hints towards the “curve” for the global field Q

In the case of number fields, the groupoid of prime

elements of the hyperring HK still makes sense and the

issue is to construct, in characteristic zero, a geometric

model similar to the curve and its abelian cover in the

function field case. Let K be a function field, i.e. a

global field of characteristic p > 1 and let Fq ⊂ K be

the field of constants. The abelian cover of the curve

is obtained by the following steps

(1) One considers the maximal abelian extension Kab ⊃
K of K.
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(2) One considers inside Kab the finite extensions E ⊃
F̄p ⊗Fq K of F̄p ⊗Fq K.

(3) For each such extension E the space of (discrete)

valuations is turned into a scheme with non-empty open

sets given by complements of finite subsets and struc-

ture sheaf given by the intersection of the valuation

rings inside E.



The space Valp(Qcyc)

The space Valp(Qcyc), of valuations on Qcyc exten-

ding the p-adic valuation of Q is canonically isomor-

phic to the quotient Σp of the space Xp of isomor-

phisms σ : F̄×p → µ(p), by the action of the Galois group

Gal(F̄p : Fp) acting by composition on the right. One

can describe Σp concretely by looking at the corres-

ponding addition on µ̃(p) = {0}∪µ(p) which is inherited

from the given isomorphism with F̄p. It suffices to spe-

cify the addition with 1 and this shows that Σp is the

set of bijections s of µ̃(p) = {0} ∪ µ(p) which commute

with all their conjugates under rotations by elements of

µ(p), and fulfill s(0) = 1, s◦s◦ . . .◦s = id with p factors.

36



Mapping torus Yp

But the comparison with the adèle class space shows

that the space Σp is not what one wants as a fiber over

p and one expects a finer space, which is the mapping

torus Yp of the action of the Frobenius on Xp. More

concretely Yp is the quotient

Yp = (Xp × (0,1)) /θZ

of the product Xp × (0,1) of Xp by the open interval

(0,1) ⊂ R by θ where

θ(σ, ρ) = (σ ◦ Fr, ρp) , ∀σ ∈ Xp, ρ ∈ (0,1).

37



Gluing together the Yp

A. Weil showed how to construct the Weil group which

compensates, at the Galois level, the absence of the

connected component of identity in the idèle class group.

We face here a similar problem at the level of the

“curve”. One should then perform the gluing of the

fibers Yp for different primes since as explained earlier,

one needs to embed all these fibers in the same non-

commutative space to account for the transversality

factors in the explicit formulas.
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The endomotive F1∞ ⊗F1 Q

Following a proposal of Soulé for F1n ⊗F1 Z, we noted

that

F1∞ ⊗F1 Q = Q[Q/Z]

is the abelian part of the BC-system. What matters

is that, with this description of the BC-system as an

endomotive E, one can consider its points over any ring

A and for a Q-algebra this is just

E(A) = Hom(Q[Q/Z], A) .
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One can describe the space Xp as

Xp = Hom(Qcycl,p,Qun
p ) = Hom(Qcycl,p,Cp) .

One obtains in this way, for each p the inclusions

Xp ⊂ Hom(Q[Q/Z],Qun
p ) = E(Qun

p ) = E(Cp) .

By comparison with the adèle class space HQ, one finds

that the natural noncommutative space in which the

above fiber Yp embeds naturally is the quotient

(E(Cp)× (0,1]) /N

where the action of n (in the semi-group N) is the pro-

duct of the action of the n-th Frobenius of the endo-

motive by the map x 7→ xn in the interval (0,1] ⊂ R.
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Characteristic 1

A commutative semi-ring is called multiplicatively can-

cellative when the multiplication by any non-zero ele-

ment is injective. Characteristic 1 means

x+ x = x , ∀x

Let R be a multiplicatively-cancellative commutative

semi-ring of characteristic 1, then for any integer n ∈ N,
the map x 7→ xn is an injective endomorphism of R.

A multiplicatively-cancellative commutative semi-ring

of characteristic 1 is called perfect if the endomorphism

R → R, x 7→ xn is surjective for all n.
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Fractional powers

ϑα : R → R, ϑα(x) = xα , ∀α ∈ Q∗
+.

Then, by construction, the ϑα’s are automorphisms ϑα ∈
Aut(R) for α ∈ Q∗

+ and they fulfill the following proper-

ties

• ϑn(x) = xn for all n ∈ N and x ∈ R.

• ϑλ ◦ ϑµ = ϑλµ for all λ, µ ∈ Q∗
+.

• ϑλ(x)ϑµ(x) = ϑλ+µ(x) for all λ, µ ∈ Q∗
+ and x ∈ R.

42



Witt in characteristic p

R a strict p-ring with S = R/pR and let τ be the
Teichmüller lift τ : S → R. We consider the ring S[[T ]]
of formal series in T with coefficients in S.

Fp[[T ]] ⊂ S[[T ]]

We use τ to get a bijection of S[[T ]] with R,

τ̃(
∑

snT
n) =

∑
τ(sn)p

n ∈ R

where the sum is p-adically convergent.

Theorem :

For any x, y ∈ S one has

τ(x) + τ(y) = τ̃(
∑
α∈Ip

wp(α)x
αy1−α)
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Coefficients w(α) in characteristic one

To obtain the analogue of the Witt construction in cha-

racteristic 1, one looks for w(α) for α ∈ I = Q ∩ [0,1]

giving associative and commutative operation

x+′ y =
∑
α∈I

w(α)xαy1−α

Besides

w(1− α) = w(α)

one needs

w(α)w(β)α = w(αβ)w(γ)(1−αβ) , γ =
α(1− β)

1− αβ
.
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Positive solution

Let G be a uniquely divisible ordered abelian group such

that x 7→ xα extends to an action of R×. Let w : I → G

be a solution such that

w(α) ≥ 1 , ∀α ∈ I

Then there exists ρ ∈ G, ρ ≥ 1 such that

w(α) = ρ−α logα−(1−α) log(1−α) , ∀α ∈ I
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Entropy

S(α) = −α logα− (1− α) log(1− α)

log(ea + eb) = sup
x∈[0,1]

S(x) + xa+ (1− x)b
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One considers the semiring R+ ⊃ B with addition

(x, y) 7→ max(x, y)

and the one-parameter group θλ ∈ Aut(Rmax
+ ), θλ(x) =

xλ.
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Towards Run

To eliminate ρ it is natural to allow all values of ρ, i.e.

to introduce a parameter T ≥ 0,

ρ = eT ∈ Rmax
+ , ρ ≥ 1

w(α) depends on T as it does in the Witt case :

w(α, T ) = α−Tα(1− α)−T (1−α)

This means that one works with functions

f(T ) ∈ Rmax
+

with the usual pointwise product and the new addition

(f1 +w f2)(T ) =
∑
α∈Ī

w(α, T )f1(T )αf2(T )1−α
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Lemma

The addition +w is given by

(f1 +w f2)(T ) = (f1(T )1/T + f2(T )1/T )T

for T > 0 and by

(f1 +w f2)(0) = sup(f1(0), f2(0))

The sum of n terms xj independent of T is given by

x1 +w · · ·+w xn =
(∑

x
1/T
j

)T
1+w 1+w · · ·+w 1 = nT
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Teichmüller lift

The constant functions T 7→ x are the analogue of the

Teichmüller representatives

τ(x)(T ) = x ∀T

One has

τ(x) + τ(y) =
∑
α∈Ī

w(α, T )xαy1−α

where the sum in the right hand side is computed in

Rmax
+ .
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Residue morphism

The evaluation at T = 0 is by construction a morphism

ϵ : f 7→ f(0) ∈ Rmax
+

We view this morphism as the analogue of the canonical

map which exists for any strict p-ring

ϵp : Wp(K) → K = Wp(K)/pWp(K)
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The automorphisms αλ ∈ Aut(Run)

One has a natural one parameter group of automor-
phisms αλ which corresponds to the θλ ∈ Aut(Rmax

+ ). It
is given by

αλ(f)(T ) = f(T/λ)λ ∀λ ∈ R×
+

One has

ϵ ◦ αλ = θλ ◦ ϵ , ∀λ

and

αλ ◦ τ = τ ◦ θλ , ∀λ.

Moreover the fixed points of αλ are of the form

f(T ) = aT

and they give the semi-field R+.
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Characters and representation by functions

For each T > 0 the algebraic operations on the value

f(T ) are the same as in the semi-field R+ using the

evaluation f(T )1/T . Thus there is a uniquely associated

character χT which is such that

χT (f) = f(T )1/T

and we use the characters χT to represent the elements

of the extension Run as functions of T with the ordinary

operations of pointwise sum and product.
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The extension Run

This shows that after symmetrization and passing to

the field of quotients Run contains at least the fractions

of the form (in the χ representation)

χ(f)(T ) =
(∑

λje
−sj/T

)
/
(∑

µje
−tj/T

)
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Deformation parameter T = ~

The key example is given by the functional integral in

the Euclidean formulation of Quantum Field Theory.

Indeed the generating function of Euclidean Green’s

functions is given by

Z(JE) = N
∫

exp

(
−
S(ϕE)− ⟨JE, ϕE⟩

~

)
D[ϕE]

where S(ϕE) is the Euclidean action, in terms of the

Euclidean classical fields ϕE, the source JE is an element

of the linear space dual to that of Euclidean classical

fields and the normalization factor N is the inverse of∫
exp

(
−
S(ϕE)

~

)
D[ϕE]
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Such integrals are typical sums involving +w where w

is the function of ~ given by

w(α, ~) = α−~α(1− α)−~(1−α)

but since the sums are infinite one needs to extend the

entropy from finite partitions of 1 to infinite partitions.


